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1 Introduction1

The principle of targeting plays an important role in economic analyses of government
policy. Applying this well-respected principle is another matter, one that requires show-
ing substantial benefits on a case-by-case basis. In many epidemics, the risk of infection or
serious health complications varies greatly between different demographic groups. The
cost of preventing economic activity through lockdowns is also typically heterogeneous
within the population. The COVID-19 pandemic, which has claimed the lives of more
than 360,000 people worldwide (as of May 29, 2020) and led to the largest global reces-
sion of the last nine decades, is no exception. It is distinguished by a very steep mortality
risk with respect to age: for those over 65 years of age mortality from infection is about 60
times that of those aged 20-49. Differences of this magnitude merit examining the benefits
of targeted policies.

In this paper we develop a multi-group version of the epidemiological SIR population-
based model and undertake a quantitative analysis applied to COVID-19.2 We focus on
identifying the benefits arising from optimal targeted policies that lock down the various
groups differentially. To do so, we solve an optimal control problem and examine how the
possibility of targeting improves the tradeoff between lives lost and economic losses. We
find that the benefits of targeting are significant. We believe the model and analysis we
develop could apply to the study of future pandemics the world might need to prepare
for.

We start with the special case of our model consisting of three groups—young (20-
49), middle-aged (50-64) and old (65+) and where the only differences in interactions
between the three groups come from differential lockdown policies. We base our pa-
rameter choices on the COVID-19 pandemic and characterize different types of optimal
policies. Consistent with other works on the pandemic, when the menu is restricted to

1Visit our online MR-SIR simulator (GUI) to explore the model, the effect of simple policies, and optimal
policies, for various parameter values: https://mr-sir.herokuapp.com/

2The SIR model was originally proposed by Kermack, McKendrick and Walker (1927) and remains
an important reference in the epidemiological literature. It belongs to a wider class of deterministic
population-based compartmental models that are a workhorse in epidemiological analyses, alongside
agent-based and network models. The benefit of the SIR framework and its extensions is that it is rela-
tively tractable, and amenable to our optimal control analysis.

Extensions of the model that allow for differences across groups are referred to in varying ways in the
epidemiological literature, such as multi-group, and when focusing on age, age-structured or age-stratified.
We prefer to refer to our model as a “multi-group” one because this terminology is familiar for both
economists and epidemiologists, and because we believe that the general principles our analysis elucidates
are applicable beyond the heterogeneities across age groups that arise in the context of COVID-19.

Other important extensions of this framework include SEIR models that allow for a non-infectious ex-
posed (E) state, which is relevant for COVID-19. We use the benchmark SIR model as our baseline and
show that our results are very similar with a similar multi-group version of the SEIR model.
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uniform policies that treat all groups symmetrically, there are difficult trade-offs facing
policy-makers. When the priority is to save lives (a “safety-focused” approach), the econ-
omy will have to endure a lengthy lockdown and sizable declines in GDP. For example,
in order to keep the mortality rate in the (adult) population below 0.2%,3 policy-makers
will have to impose a full or partial lockdown of the economy for almost one year and
a half and put up with economic costs equivalent to as much as 37% of one year’s GDP.
Conversely, policy-makers prioritizing the economy (employing an “economy-focused
approach) and attempting to keep economic damages to less than 10% of one year’s GDP
may be forced to put up with a mortality rate over 1%.

Our main result is that this policy trade-off can be significantly improved with tar-
geted policies that apply differential lockdowns on the various risk groups. To make
this point, we focus on the (“Pareto”) frontier between economic loss and loss of life,
which represents the aforementioned trade-off facing policy-makers and is depicted by
the solid curve in Figure 1.1. The frontier is upward sloping after a certain point, indi-
cating that the absence of any mitigation policies will lead to both greater economic loss
and more lives lost. This is because economic damages include lost productivity due to
illness and the forgone productivity contributions of those who die because of the virus.
Most importantly, the dashed frontier for targeted policies is much closer to the “bliss
point” represented by the origin than is the frontier for uniform policies. This figure
in addition helps us understand why targeted policies can save a significant number of
lives—moving horizontally from the uniform policy frontier to the targeted policy fron-
tier keeps the economic loss the same but substantially reduces fatalities. For example, we
show that compared to the economy-focused uniform policy, targeting enables mortality
in the (adult) population to be reduced from above 1% to around 0.5%, saving over 1.3
million lives compared to the benchmark of optimal uniform policy. Alternatively, with
the safety-focused objective of 0.02% mortality, targeting reduces economic damages from
around 37% to 25%. Naturally, the exact gains depend on the initial reference point on the
frontier and whether the gains from moving to targeted policies are taken as a reductions
in mortality or economic losses, or some combination. Our approach based on comparing
entire frontiers has the benefit of sidestepping the difficult choice of a particular point on
the frontier.4

We will also see that, for our COVID-19-based parameters, almost all of the gains from

3Throughout, by “population” we refer to the adult population (over 20 years old).
4A common alternative is to pick a point along the frontier by solving for the optimal policy using a

“value of life” parameter that trades off deaths versus economic losses. However, the considerable dis-
agreement about the right value of life, or even about the validity of this concept in practice, complicates
applications of this approach.
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Figure 1.1: Frontier: economic vs. lives lost.

targeting can be achieved without the need to resort to complicated targeting policies.
Rather, a “semi-targeted” policy that simply treats the most vulnerable (older) age group
differently than the rest of the population performs nearly as well as “fully-targeted”
policies (which also treat the young and the middle-aged differentially).

Our model also enables an analysis of a richer menu of policy options. One promising
set of policies (in practice implemented both by explicit regulations and norms) is those
that reduce interactions between the most vulnerable age group and the rest of the pop-
ulation. These policies, which we call “group distancing”, turn out to be very powerful
in reducing mortalities, because they complement targeted lockdowns. In our model,
the mortality rate of the older age group can still be relatively high even under optimal
targeted policies because, as in the real world, lockdowns are imperfect and older indi-
viduals still come into contact with and become infected by the young and the middle
aged.5 Group distancing partially rectifies this and enables both better health outcomes
and shorter lockdowns (since, when the older group is further isolated from the younger
ones, the latter’s lockdown can be eased more rapidly). For example, with group distanc-
ing and semi-targeted policies, economic losses resulting from the safety-focused objec-
tive of no more than 0.2% mortality rate can be reduced to about 16% of one year’s GDP
(or, alternatively, mortality can be reduced further).

5This problem is highlighted by the plight of the nursing home populations in the United States,
who were exposed to the virus via visitors and staff, and to date account for more than one-third of all
COVID-19-related deaths in the country (e.g. https://www.nytimes.com/interactive/2020/05/09/us/
coronavirus-cases-nursing-homes-us.html).
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Figure 1.2: Frontier: economic vs. lives lost with additional policies.

Another set of policies that significantly improve the trade-offs facing policy-makers
is testing and (contact) tracing. By identifying and isolating infected individuals, these
policies provide better protection against the virus and lead to much lower economic and
public health costs, especially when combined with semi-targeted policies. Interestingly,
when both group distancing and testing-tracing policies are adopted and we consider
semi-targeted optimal policies, the trade-off between lives lost and economic damages
improves radically as illustrated Figure 1.2. For example, policy-makers can keep eco-
nomic damages to about 7% of one year’s GDP while achieving a 0.2% mortality.

We also investigate the implications of the returns to scale in the“matching technol-
ogy” between susceptible and infected individuals for the dynamics of the pandemic and
optimal policy. At one extreme one may assume a quadratic specification, which im-
plies that new infections depend on the product of susceptible and infected populations
(called “density-dependent” or “mass action” in the epidemiological literature, e.g., Mc-
Callum et al. (2001)). At the other extreme, one may postulate a constant returns spec-
ification, which captures the notion that each person will be involved with some fixed
number of interactions and what matters is the fraction of infected people they contact
(called frequency-dependent in the epidemiological literature).With a constant returns to
scale matching technology, the recovered offer greater protection to the susceptibles, but
counteracting this, lockdowns themselves are less effective (because the “double benefit”
generated by lockdowns under the quadratic matching technology is weakened). De-
spite these differences, we find that optimal semi-targeted policies are broadly similar
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under different matching technologies and continue to significantly outperform optimal
uniform policies.

We stress that there is much uncertainty about many of the key parameters for COVID-
19 (Manski and Molinari, 2020) and any optimal policy, whether uniform or not, will be
highly sensitive to these parameters (e.g., Atkeson, 2020a, Avery et al., 2020, Stock, 2020).
Nonetheless, while the specific numbers on economic and public health costs are sensitive
to parameter values, our general conclusion that targeted policies bring sizable benefits
appear very robust (as we document as well).

Within the incipient economics-epidemiological literature, Atkeson (2020b) and Stock
(2020) provide an introduction to the SIR framework and its implications for COVID-19
in the US. Fernández-Villaverde and Jones (2020) fit a standard SIR model to multiple
regions (countries, states and cities) and uses the model to infer unobservables (such as
number of recovered) and create forecasts. Closer to our paper, a number of recent papers
have started incorporating economic trade-offs and conducting optimal policy analysis
within the SIR framework (e.g. Rowthorn and Toxvaerd, 2020, Eichenbaum, Rebelo and
Trabandt 2020a, Alvarez, Argente and Lippi 2020, Jones, Philippon and Venkateswaran,
2020, Farboodi, Jarosch and Shimer, 2020 and Garriga et al., 2020).6 All of the papers
undertaking an optimal control analysis have worked with single-group models.

Several recent papers independently investigate the role of age-dependent hospital-
ization and fatality rates in SIR models (Gollier, 2020, Favero, Ichino and Rustichini, 2020,
Rampini, 2020, Bairoliya and İmrohoroğlu, 2020, Brotherhood et al. (2020) and Glover
et al. (2020)). The main differences between these papers and ours are: (1) our general
treatment of dynamics of infection in an SIR model with multiple risk groups, different
interaction structures and potentially imperfect testing and tracing, and (2) more impor-
tantly, our analysis of optimal policy. For example, our results showing that semi-targeted
policies can significantly improve over optimal uniform policies and achieve the great
majority of the gains of optimal fully-targeted policies have no counterparts in these pa-
pers. Brotherhood, Kircher, Santos and Tertilt (2020) and Glover, Heathcote, Krueger and
Ríos-Rull (2020), in particular, study infection and economic dynamics in settings with
additional economic choices (labor supply and consumption choices under incomplete
information about infection status in the former, and sectoral choice in the latter). Their
focus and main results are different and complementary to ours. For example, Brother-
hood et al. (2020) focus on younger individuals’ risk-taking behavior and the implications

6In addition, Eichenbaum, Rebelo and Trabandt (2020a), Jones, Philippon and Venkateswaran (2020),
Farboodi, Jarosch and Shimer (2020), Kudlyak, Smith and Wilson (2020) and Garibaldi, Moen and Pissarides
(2020) are recent papers endogenizing economic behavior in basic SIR models. Early related contributions
include Geoffard and Philipson (1996) and Fenichel (2013).
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of this for testing and conditional quarantining, while Glover et al. (2020)’s main empha-
sis is on the conflict between the young and the old about mitigation policies. Although
Glover et al. (2020) consider optimal policy, this policy is chosen from a parametric family
and their main emphasis is on the contrast between this policy and those preferred by
the young and the old. Finally, recent work by Baqaee et al. (2020) uses a model where
policy is targeted according to age and sector to investigate alternative reopening scenar-
ios (but consider on policies where policy-makers link activity to the unemployment rate
and whether deaths are rising or high).

The rest of the paper is organized as follows. The next section outlines the main ele-
ments of our multi-group SIR model, presenting the continuous-time laws of motion for
infectious, susceptible and recovered populations by group, as well as the economic and
mortality outcomes that our model with lockdown policies can generate. Section 4 de-
scribes our parameter choices and numerical methods. Our main results are presented in
Section 5, which also contains a number of robustness exercises. Section 6 contains our
conclusions.

2 Multi-group SIR model

Our multi-group SIR model is set in continuous time t ∈ [0, ∞). Individuals are parti-
tioned into groups j = 1, . . . , J with Nj initial members.7 The total population is normal-
ized to unity so that ∑j Nj = 1.

At any point in time t, individuals in group j are subdivided into those susceptible (S),
those infected (I), those recovered (R) and those deceased (D),

Sj(t) + Ij(t) + Rj(t) + Dj(t) = Nj.

Agents move from susceptible to infected, then either recover or die.8,9 We write S(t) =
{Sj(t)}j and similarly for I(t), R(t) and D(t). Groups interact with themselves as well as
with each other, as described below.

Before describing the details, we anticipate one of our key equations. In the canonical

7See Heesterbeek and Roberts (2007) and Bayham, Kuminoff, Gunn and Fenichel (2015) and the refer-
ences therein for a discussion of age- or stage-structured compartmental epidemiological models.

8Given relatively short time horizon of this pandemic, we abstract from other sources of deaths and
births.

9The most common extensions of the SIR model include either the “Exposed” who have not yet turned
infectious (SEIR) or the “Asymptomatic” who may still infect others (SAIR). See, for example, Brauer,
van den Driessche and Wu (2008). We believe our main conclusions and results are robust to such ex-
tensions and plan to investigate this in the future.
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Figure 2.1: MG-SIR: Multiple-Risk Susceptible Infected Recovered Model. Solid lines
show the flows from one state to another. Dashed lines emphasize interactions that take
place across risk groups.

single-group model, the key evolution equation is quadratic:

new infections = βSI.

In our model, absent lockdowns and isolations, we have

new infections in group j = βSj
∑k ρjk Ik(

∑k ρjk(Sk + Ik + Rk)
)2−α

,

where {ρjk} are parameters that control the contact rate between group j and k. Here
α ∈ [1, 2] allows us to control the returns to scale in matching: when α = 1 we have con-
stant returns: infections double if S, I and R double; when α = 2 we obtain the quadratic
specification that, with a single group, boils down to the canonical SIR model. Below
we develop the full model, complementing and extending this basic equation to include
testing, isolation, lockdowns, hospital capacity, the arrival of a vaccine and other consid-
erations.

2.1 Model Assumptions

Here we discuss the basic elements of our model and then turn to the dynamic equations
describing the evolution of the state variables.

Infection, ICU, Fatality and Recovery. Susceptible individuals may become infected by
coming into contact with infected individuals. Those infected may or may not require
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“ICU care”, a catch all label that we use to capture the need for ventilators and other
specialized medical care. We suppose that the need for ICU care is immediately realized
upon infection. Let ιj denote the constant fraction of infected people of type j needing
ICU care. With Poisson arrival δr

j an ICU patient of type j recovers. Non-ICU patients do
not die, and recover with Poisson arrival γj.

Only those needing ICU care may die. While in the ICU, patients die with Poisson
arrival δd

j (t). We allow this death rate to be a function of total ICU needs relative to
capacity, which may vary over time. We assume that

γj = δd
j (t) + δr

j (t).

These assumptions imply that the proportions of ICU and non-ICU patients among the
infected in group j do not change over time.10

Let Hj(t) denote the number of type j individuals needing ICU care at time t, so that
Hj(t) = ιj Ij(t). Total ICU needs are H(t) = ∑j Hj(t). We assume that the death probabil-
ity conditional on ICU is a non-decreasing function of the number of patients

δd
j (t) = ψj(H(t)),

for some given nondecreasing function ψj.11

Detection: Infection and Immunity. Detection of infected individuals as well as their
isolation is assumed to be imperfect. To avoid additional state variables, for each infected
individual it is determined immediately upon infection whether detection and isolation is
possible. We denote by τj the constant probability that an infected individual of type j not
needing ICU care becomes isolated. Isolation may occur merely because the individual
becomes too sick to work and socialize, perhaps needing hospitalization short of the ICU.
It may also occur because the individual is detected as infected by showing symptoms or
by testing and tracing efforts. Similarly, we let φj denote the probability that an individual
of type j needing ICU care is detected and isolated. While it may be reasonable to set
φj = 1, we allow φj < 1 to nest earlier work, such as Alvarez et al. (2020), that did not
model ICU needs explicitly (by setting τj = φj). Summing up, the probability that an

10Relaxing these assumptions is possible, but requires an additional state variable to keep track of ICU
vs. non-ICU infected individuals.

11One may extend the model to incorporate capacity that increases over time by allowing ψj(H(t), t) to
depend on t. This could capture the efforts undertaken at the start of the epidemic to improve medical
resources for COVID-19 patients.
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infected person fails to be detected and isolated is given by

ηj ≡ 1− (ιjφj + (1− ιj)τj).

We assume that recovered agents are immune, at least for the remaining duration of
the pandemic, until the vaccine and cure arrive.12 Individuals that recover can be released
from lockdown at no risk to themselves or others. However, due to imperfect testing, we
suppose that only a fraction κj of recovered agents are identified as such and allowed
to work freely. The remaining fraction is not identified andthus treated identically to
those that are not deemed recovered. Once again, to simplify we assume this status is
determined immediately after recovery.13

Lockdown and Social Distancing. We now consider lockdown and social distancing
measures that affect the rate of transmission of infections. To simplify our discussion
we label all of these as “lockdown” policies, although they could represent other social
distancing behavior and policies as well.

Individuals in group j produce wj when they are not in lockdown and ξ jwj during
lockdown, where ξ j ∈ [0, 1]. The parameter ξ j captures the relative productivity of home
vs. market production. If ξ j > 0, then some productive work can be done from home.

A full lockdown creates a loss for each member of group j equal to (1− ξ j)wj.14 For
each group, lockdowns are not necessarily all or nothing. Let Lj(t) denote the share of
group j that is in “lockdown” with Lj(t) = 1 designating full lockdown and Lj(t) = 0
no lockdown. Intermediate values of Lj(t) ∈ (0, 1) represent less extreme situations. One
interpretation is that at each instant t a random fraction Lj(t) is drawn independently (of
all past events) from group j and sent into lockdown.15

12Although many experts agree that this is currently the leading hypothesis for COVID-19, it is im-
portant to stress that, due to the recency of the pandemic, at this time this hypothesis is not backed
by conclusive evidence. Indeed, the World Health Organization has stated “There is currently no ev-
idence that people who have recovered from COVID-19 and have antibodies are protected from a
second infection.” (April 24, 2020, briefing: https://www.who.int/news-room/commentaries/detail/
immunity-passports-in-the-context-of-covid-19).

13If the only constraint were detection, it might be reasonable to suppose κj ∈ [ιj · φj + (1 − ιj)τj, 1]
capturing the notion that we do not forget those that were identified as being infected. However, we do not
require this condition.

14Note that wj summarizes both the wage and employment level of group j. In the data, as people age
wages rise but labor market participation falls. More generally, wj may also capture more than production,
such as utility benefits experienced by consumers or leisure outside of lockdown. We focus on the narrow
interpretation of this variable to facilitate our quantitative analysis, though we return to this issue in our
robustness checks.

15This implies that intermediate lockdowns are not selecting the same workers to be locked down per-
sistently. These types of policies can be incorporated into our framework by splitting identical workers into
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Full lockdown may not be feasible, so we impose Lj(t) ≤ L̄j ≤ 1. This may capture
that some goods are deemed essential, so their production cannot be shut down. Alterna-
tively, it may be hard to monitor and prevent some people from going to their workplace.
We also assume that even if full lockdown were feasible, so that nobody could work, it
would not necessarily eliminate all human interactions and contagion. In particular, we
assume that lockdown Lj(t) reduces actual work by Lj(t), but reduces the presence of
group j in infectious interactions only by a factor 1− θjLj(t) where θj ≤ 1. This may be
because people are still allowed on the streets and transmission occurs when they cross
paths, or it may be because people disobey lockdowns or quarantines, or cheat at the mar-
gin by visiting each other socially. It may also capture transmission that occurs without
direct person-to-person contact, as when someone touches an object recently touched by
an infected person. Basically, for a number of reasons, lockdown is not fully effective at
removing transmission and θj < 1 is a measure of this inefficiency.

Vaccine and Cure. We assume a vaccine becomes available at some date T. To simplify,
we assume that a cure for all those currently infected also becomes available at the same
date.16 In the case of COVID-19, experts currently estimate the time for developing, test-
ing and rolling out a vaccine to be between one and two years, although extraordinary
efforts are underway to speed up vaccine developments.

2.2 Dynamics in MG-SIR

Before the vaccine and cure, infections for group j evolve according to the differential
equation for all t ∈ (0, T)

İj = Mj(S, I, R, L)β(1− θjLj)Sj ∑
k

ρjkηk(1− θkLk)Ik − γj Ij,

for nonnegative β and contact coefficients {ρjk} and where

Mj(S, I, R, L) ≡
(

∑
k

ρjk[(Sk + ηk Ik + (1− κk)Rk)(1− θjLk) + κkRk]

)α−2

.

different groups that can be treated differently.
16Anti-viral drugs to treat an infection and vaccines involve two different medical advances and imple-

mentations. In practice, the possibility of a vaccine being discovered in the absence of a cure makes little
difference for optimal policy as long as the infections at date T will be low, so that the value of a cure for
the currently infected is small relative to the benefit of preventing further infections. Discovery of a perfect
and immediate cure would, in principle, be as good as having a vaccine.
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Note that Mj(S, I, R, L) = 1 in the quadratic case in which α = 2.
The rest of the laws of motion for t ∈ (0, T) are

Ṡj = − İj − γj Ij,

Ḋj = δd
j (t)Hj,

Ṙj = δr
j (t)Hj + γj(Ij − Hj),

where, again, Hj = ιj Ij denote the number of ICU patients in group j.
After the vaccine and cure arrive at T, every individual that is alive is placed in the

recovered category: S(t) = I(t) = 0 and R(t) = S(T−) + R(T−) and D(t) = D(T−) for
t ≥ T. Naturally, we set lockdowns to zero L(t) = 0 for t ≥ T.

Discussion. To gain further insight into the law of motion for infections, consider the
single group case and set α = 2 and ρ = η = 1. Then we obtain

İj = βSI(1− θL)2 − γI,

which is the standard quadratic SIR specification.
With multiple groups, the coefficients {ρjk} allow for different contact rates across

groups. For instance, it may be natural to suppose that ρjj > ρjk for k 6= j, so that individ-
uals of a given group tend to have a higher contact rate within their own group (i.e., the
young may work and socialize with each other more than with the old).

Although the majority of the economic-epidemiology literature focuses on the quadratic
matching case with α = 2, we allow a more general formulation. One way to see the dif-
ference is to think about scale. The matching technology with α = 1 exhibits constant
returns to scale: doubling S, I and R (while fixing the lockdown policy L) doubles the
number of infections, leaving the rate of growth in infections unchanged. In contrast,
with quadratic matching, it would quadruple it. Intuitively, the constant returns case
with α = 1 assumes that the number of contacts for each individual are not affected when
the total number of people not in lockdown doubles. This is referred to as “frequency
dependence” in epidemiology. In contrast, the quadratic case with α = 2 assumes the
number of contacts doubles. The quadratic matching technology assumes that a more
densely occupied environment leads to more contacts in strict proportion to density. This
is referred to as “density dependence” in epidemiology.

In the absence of lockdowns, the differences between α = 2 and α = 1 are small
in practice. This is because, we can adjust the value of β to compensate for initial size
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differences in population. Then, as long as mortality is never too high, so that the value
of those alive S + I + R is not too affected, the two specifications behave very closely.
However, in the presence of lockdowns there are nontrivial differences between α = 2
and α = 1. To see this, consider as an example the single group case again, but this time
with α = 1:

İj = βSI
1− θL

S + I + R + θL
1−θL κR

− γI

Setting κ = 0 and S + I + R ≈ 1 first, we see that lockdowns affect new infections by a
factor 1− θL instead of the quadratic (1− θL)2. Thus, halving the population interacting
by way of lockdowns, i.e., (1 − θL) = 1

2 , has the effect of reducing new infections by
a forth with α = 2 and by a half with α = 1. Turning to the denominator, when κ >

0, a further difference emerges due to due to the presence of θL
1−θL κR. With non-zero

lockdown L > 0 and fixing S+ I + R, we see that larger numbers of recovered individuals
R contribute to lower infections, which is a strong type of herd immunity effect.

In practice, some social interactions are closer to the quadratic kind, while others to
constant returns. Walking along a street or shopping a supermarket generate interactions
that do increase with density. However, interactions at work or with friends may be closer
to constant returns to scale, since each person will make time and seek out a given number
of co-workers or friends to interact closely with.

An Aggregation Result. Our MG-SIR model displays a useful aggregation property,
behaving like a single group SIR model in special cases when lockdowns are uniform.

Suppose that effective contact rates and resolution rates out of infection the same
across groups, so that β jk = β and γj = γ, and consider lockdown policies that are uni-
form across groups as well, so that Lj(t) = L(t) for all j. Suppose further that infection
rates are initially identical across groups, so that Sj(0)/Nj, Ij(0)/Nj and Rj(0)/Nj are in-
dependent of j. Then it is straightforward to see that, despite differences in fatality rates,
the evolution of infections within each group, and hence aggregate infections, is identical
to that of a single group SIR model. The same is not true for deaths—these are different
across groups, but do not affect the evolution of infections.

This aggregation result is verified in our simulations when we present uniform opti-
mal lockdowns.
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3 Efficient Frontier

Our planner controls lockdown for each group {Lj(t)}j for all t ∈ [0, T) taking into ac-
count the effect this has on the dynamical system described above. We will consider cases
where lockdown is restricted to be uniform across groups Lj(t) = L(t) as well as cases
where it is differential across groups.

There are two objectives to consider, and the trade-off between the two gives our fron-
tier. To simplify the exposition we ignore discounting.17 The first objective is to minimize
total (excess) deaths during the pandemic, which is simply

Lives Lost = ∑
j

Dj(T).

Recall that there will be no (excess) deaths after the arrival of the vaccine and cure, that is
for t > T.18

The second goal is to minimize the total economic loss, which we represent as

Economic Losses =
∫ T

0
∑

j
Ψj(t) dt,

where the flow cost for group j is given by

Ψj(t) = (1− ξ j)wjSj(t)Lj(t) + (1− ξ j)wj Ij(t)(1− ηk(1− Lj(t)))

+ (1− ξ j)wj(1− κj)Rj(t)Lj(t) + wj∆jιjδ
d
j (t)Ij(t)

The first term represents the economic loss of lockdown from susceptible individuals.

17Discounting can be easily added, but note that nominal interest rates were reduced to near zero in
April 2020 so this has no significant effects on our results.

18Allowing the vaccine arrival time to be stochastic is simple. Suppose T has cumulative distribution
F(T) and assume there is no information about the vaccine’s time of arrival before its actual arrival. The
first objective is the expected number of deaths, which can be integrated by parts to yield,

∫ ∞

0
f (T)

(
∑

j
Dj(T)

)
dT =

∫ ∞

0
(1− F(t))

(
∑

j
ιjδ

d
j (t)Ij(t)

)
dt

Similarly, the economic objective becomes∫ ∞

0
(1− F(t))∑

j
Ψj(t)dt

Previously 1− F(t) = 1 for t < T and 1− F(t) = 0 for t ≥ T. A convenient choice assumed in some papers
(e.g. Alvarez et al., 2020; Eichenbaum et al., 2020b) is a Poisson distribution with constant arrival rate.
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The second term is the economic loss if lockdown from infected individuals, which now
captures the fact that even in the absence of a lockdown (Lj(t) = 0) a fraction 1− ηj finds
itself not working because it is in isolation. The third term represents the lockdown cost
from recovered individuals, which is zero if all recovered agents are immediately sent
back to work, i.e., κj = 1. The last term represents the economic cost of deaths in group
j, given by the product of the death flow rate ιjδ

d
j (t)Ij(t) and the economic loss wj∆j per

death, where ∆j captures the present discounted value of a group j memeber’s remaining
employment time until retirement that is lost due to death.19

Frontier and Value of Life. Our approach is to characterize the frontier between eco-
nomic losses and lives. A common alternative is to weight the latter by some value, say χ

and minimize ∫ T

0
∑

j
Ψj(t) dt + χ ∑

j
Dj(T).

To see the relation with our approach, note that for any χ, minimizing this expression will
lead to a particular point on the frontier. As long as the frontier is convex, one can trace
out the entire frontier by varying χ. Geometrically, each value of χ corresponds to a point
on the frontier and χ equals the the tangent slope at this point.

Under this interpretation, wj∆j + χ denotes the total value of life, or penalty for death,
comprised of an economic component wj∆j and a non-pecuniary component χ.

The main distinction between our approach and one centered around the weighted
objective using χ is that we characterize the entire frontier and describe points on the
frontier by the number of deaths and the economic losses, rather than invoking a value of
life or mapping it to a parameter such as χ.

This difference may seem subtle, but it offers a distinct perspective: we do not pur-
port to determine an optimum, selecting a point along the frontier. Rather, by character-
izing the frontier we describe the menu of difficult choices society (policy-makers) faces.
Our results showing the benefits of targeting policies acquire the following interpretation:
Suppose society is using uniform lockdowns and finds itself somewhere along the uni-
form policy frontier, or worse. Then our analysis can shed light on how to improve this
situation, by either reducing the number of deaths or lowering the economic losses, or
some combination. In contrast, an approach centered around a choice for the value of life
or χ is less attractive, in part because there is great disagreement about the right values
for this parameter.

19To simplify, we take ∆j to be constant. An alternative is to let it depend on time of death, so that we
have ∆j(t). This would makes little difference for the range of values of T we consider.
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Marginal Value of Vaccine Innovations. Suppose we have a marginal improvement in
the arrival of the vaccine. From T to T − dT with dT > 0 denoting an improvement.
Applying the Envelope Theorem, we compute the marginal change in the two objectives
to be, deaths and economic losses:20

−dTιjδ
d
j (t)Ij(t) and − dT ∑

j
Ψj(T).

As usual, the planner will react to a change in T to achieve a new optimum, but the Enve-
lope Theorem allows us to evaluate the marginal value of small changes without comput-
ing the new solution. Intuitively, when the vaccine arrives earlier, the distribution of F(t)
shifts up, lowering the cost because the future flow costs from lockdown, represented by
integrand, are no longer incurred.21

From the above calculations, the marginal value of an earlier vaccine/cure depends
crucially on lockdown and infection rates. In particular, if both are vanishingly small
at T, then there is only a vanishingly small improvement. For example, if the original
solution was “going for herd immunity” (see below) so that lockdowns were zero and
infections were near zero at T, then a slightly earlier vaccine arrival is of little value.

Many Herd Immunities and Waiting for the Vaccine. Although the exact form of the
optimal lockdown is complex, it is useful to discuss some broad concepts and aspects of
the alternative strategies available to reduce fatalities and economic losses. First, one can
either hold out for the vaccine or alternatively go for “herd immunity.” Second, there
are many ways to reach herd immunity and different policies can steer the pandemic
toward different herd immunity outcomes. To simplify the discussion, we consider the
two-group case and assume that the two groups, labeled the old and the young, have
equal size with ρ = η = 1 and α = 2.

Figure 3.1 shows, for this case, the time path for the pair (Sy(t), So(t)) over the course

20This calculation presumes the solution is continuous in the vaccine arrival c.d.f. F at the original
optimal point. Because the problem is not convex, solutions may be discontinuous. If the solution is dis-
continuous, a similar formula holds for the directional derivative.

21In the stochastic arrival case, we have a distribution F(t), and consider a change in this distribution
δF, which changes deaths by

−
∫ ∞

0
δF(t)

(
∑

j
ιjδ

d
j (t)Ij(t)

)
dt

and economic losses by

−
∫ ∞

0
δF(t)e−rt ∑

j
Ψj(t)dt

15



Sy(0,0)

So (1,1)

Herd 
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Figure 3.1: Illustrative herd immunity region and different time paths for the pandemic
with two groups, old and young.

of the pandemic for t ∈ [0, T] until the arrival of the vaccine. The pandemic starts near
(1, 1) with few infections and travels down and to the left, as more people get infected.

The shaded area represents the region of herd immunity, where the size of the suscep-
tible population is sufficiently low that, once we enter this region, the pandemic comes to
an end quickly (but not immediately as we discuss below).22 In single-group SIR models,
this region corresponds to an interval of the form S ∈ [0, S̄], and within this interval we
have İ < 0. With multiple groups this same concept defines a region for the pair (Sy, So).
When ρ = 1 and the two groups have equal sizes, this region is symmetric, with slope
−1, as shown in the figure.

Without any mitigation the disease follows the dashed 45-degree line, starting from
an initial condition where almost nobody has been sick and reaching a situation where
the majority in both groups have been infected at some point. In this case, the pandemic
goes beyond the frontier for herd immunity—a phenomenon referred to as “overshoot-
ing” in the epidemiology literature. This occurs if there are a significant number of in-
fections when crossing the threshold. Note that although the pandemic travels along the
45-degree line so that the same fraction of young and old get infected, mortality may be
significantly higher for the old.

22More formally, we can define the region of herd immunity as the set of points (sy, s0) with the
property that, in the absence of lockdowns Ly(t) = Lo(t) = 0, the dynamic system starting from
(Sy(0), S0(0)) = (Sy, S0) and small initial infections (Iy(0), Io(0)) converges to points near (Sy, S0). In other
words (Sy(∞), S0(∞)) is continuous in (Iy(0), Io(0)) so that for the limit point (Sy(∞), S0(∞)) we have
(Sy(∞), S0(∞)) → (Sy, S0) as (Iy(0), Io(0)) → (Iy(0), Io(0)). One can express this property as a condition
on the largest (dominant) eigenvalue of the linearized dynamical system.
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We can classify any policy by whether the path it induces reaches the herd immunity
region before time t = T. Those that do not do so can be said to be “waiting for the
vaccine”, while those that reach this region are going for herd immunity.

Any uniform policy sends (Sy, So) along the 45-degree line by virtue of our aggrega-
tion result. Uniform policies with sufficiently strict lockdowns will keep infections low
enough to wait for the vaccine, and so will be on the segment of the dashed line outside
of this region at time t = T. Other uniform policies may reach herd immunity but avoid a
significant overshoot. Moreover, as our analysis below will reveal, even optimal policies
that go for herd immunity will seek to “flatten the curve” in order to avoid the higher
mortality due to limited hospital capacity.

More targeted mitigation policies open up new possibilities. The top solid line locks
down the old more aggressively than the young, leading to lower infections among old
relative to young. The path of the pandemic may then reach the region of herd immunity
at an angle, with a higher fraction of infected among the young than the old, reducing the
excess mortality coming from the old. With targeted policies, too, the planner may opt
to hold out for the vaccine as with the lower solid line, but will also adopt policies that
reduce infections among the old.

4 Specification and Calibration

In our analysis in the remainder of the paper, we focus on targeting policies based on
age.23 We consider a setting with three groups, the “young” (y) who are ages 20-49, the
“middle-aged” (m) who are 50-64, and the “old” (o) who are 65 and above. We do not
include those under 20 in our analysis. We take the population share of these three groups
among those over 20 years of age from BLS population data for 2019, setting Ny = 0.53,
Nm = 0.26, and No = 0.21. In our baseline, we assume equal earnings per capita for the
young and middle-aged groups, which we normalize by setting wy = wm = 1.24 Based on
the fact that only 20% of those over 65 years of age are employed, and their average full-
time weekly earnings, we set wo = 0.26. We set ξ = 0.3, which implies that working from
home results, on average, in a 70% loss of productivity. This number is chosen so that a
full-year lockdown of all non-essential workers would lead to a roughly 50% decline in
GDP. It is also in the ballpark of the numbers suggested in Dingel and Neiman (2020).

23Another factor that targeted policies could depend on is the presence of co-morbidities, which have
been shown to lead to significantly higher mortality and ICU needs.

24From BLS statistics, the full-time employed middle-aged have 12% higher weekly earnings, but are
13% less likely to be employed than the young. The share of workers who are employed full-time versus
part-time is roughly equal in the two groups.
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As in Alvarez, Argente and Lippi (2020), in our baseline calibration we set L̄ = 0.7
when we consider uniform policies, reflecting the need for essential services, and set L̄o =

1 and L̄j = 0.7 for the other groups when considering targeted policies. In our baseline,
we assume that there is a 10% chance that an infected individual is isolated, a number
that is a few percentage points higher than the 6.6% probability of hospitalization for a
COVID-19 case implied for the US by the assumptions in Ferguson et al. (2020). Thus, we
set φj = τj = 0.1, implying that the probability of failing to isolate an infected individual
is ηj ≡ η = 0.9 for all groups. (In Section 5.3, we consider the effect of decreases in η

thanks to identification and isolation of the infected by symptoms, testing, or tracing.)
As in Alvarez et al. (2020), for our baseline, we assume that there is perfect identification
of those individuals who have recovered and are allowed to go back to work avoiding
lockdowns, so that κj = 1. This case is of interest because issuing such “immunity card”
permits for work is clearly efficient in the model. However, it may not be realistic if
testing is limited, as well as the fact that there are many ethical and practical issues to
resolve. Thus, we will also consider the opposite assumption, so that the recovered are
not identified or treated differently, and are subject to the same lockdowns as everyone
else, κj = 0.

We choose γ = 1/18 so that a COVID-19 case reaches a conclusion, with the individual
either recovering or dying, in 18 days on average.25We set β equal to 0.134, reflecting a
basic reproductive value of R0 = 2.4 without social distancing and isolation measures,26

which is the baseline value used in Ferguson et al. (2020).
For the nature of interactions we start by assuming that there is a single pool in which

all of those who are not effectively locked down (share (1− θLj) of each group j) interact.
We set θ = 0.75 in our baseline and examine lower values of θ in our robustness analysis.
This value of θ implies that a full lockdown reduces interactions by 75%. For the contact
matrix {ρij} we start with a conservative benchmark and assume ρij = 1 for all i, j, so
that all age groups interact equally with each other. This is not meant to be realistic, but
it diminishes the benefit of targeting, for it implies that the old will be more exposed to
the infected among the younger groups. In Section 5.6 we use data from Klepac et al.
(2020), based on the BBC pandemic project, for interaction patterns across different age
groups in the UK and show that this richer interaction structure has little effect on our

25Setting γ = 1/5 or 1/7 to match the length of time during which an individual is infectious and then
recalibrating β so that R0 = 2.4 as in our baseline leads to essentially identical results. In our robustness ex-
ercises in Section 5.6 we show that explicitly incorporating a distinction between the length of the infectious
state and the total duration of the infection using an SEIR model leads to essentially identical results.

26R0 = β/γ can be thought of as the number of new infections generated in a day by a single infectious
individual when the rest of the population is susceptible.
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Age Group Fatality Rate

20-49 0.001
50-64 0.01
65+ 0.06

Table 1: Infection Fatality Rate from COVID-19.

main results.27

We take from Ferguson et al. (2020) the case fatality rates for the three age groups,
conditional on infection and ICU services being available, which we denote by (δd

y, δd
m, δd

o)

and summarize in Table 1. For the young and middle-aged groups, these numbers closely
match mortality rates we derived from recent South Korea data, a country with ample
ICU capacity relative to needs and widespread testing (and thus hopefully relatively little
selection of the more seriously ill among those tested).28 For those over 70, however, the
South Korean data give a higher fatality rate than that used by Ferguson et al. (2020).
Given even lower fatality rates for older cohorts from the Diamond Princess cruise ship,
we use mortality rates close to Ferguson et al. (2020) for those ages 65+ as our baseline and
then verify the robustness of our results to Korean rates. To match the case fatality rates
conditional on infection shown in Table 1, we set base daily mortality rates conditional on
ICU need for the different groups at: δd

y = 0.001γ/ιj, δd
m = 0.01γ/ιm, and δd

o = 0.06γ/ιo.
Finally, we model the effect of the population infection rate on mortality due to limited

ICU capacity by assuming that ICU needs are proportional to the mortality rates in Table
1, letting ιj = σδd

j for some parameter σ > 0. We set σ = 0.0076 based on the fraction
of infections requiring ICU care by age used in Ferguson et al. (2020), adjusted for the
structure of the US population, and the assumption that 10 days of the 18-day average
case duration for those infected individuals is spent in the ICU.29 Hence, ICU needs at
time t are H(t) = (0.0076)∑k δd

k Ik(t), and we specify mortality rates as a function of

27This data set is more recent, more detailed and more systematically collected (using information all
locations from 36,000 volunteers using the BBC pandemic project smart phone app) than other available
sources such as POLYMOD (Hedengren et al., 2014; Prem et al., 2017). The POLYMOD data, in fact, show a
stronger decline in contacts with age than the BBC pandemic project data.

28We used age-specific deaths reported on April 11 and divided by the total number of age- specific cases
reported 18 days earlier. The data are available in the Korean language press releases of the Korean Central
Disease Control Headquarters & Central Disaster Management Headquarters: http://ncov.mohw.go.kr/
tcmBoardList.do?brdId=3

29Both Ferguson et al. (2020) and the Korean data, which report the numbers of current “critical” and
“severe” active cases, provide support for the assumption that ICU needs for different age groups are
proportional to case fatality rates.
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H(t) as follows:

δd
j (t) = δd

j · [1 + λH(t)].

It is difficult to know how high mortality rates would go if ICU needs massively exceeded
available capacity. In our baseline, we set λ =

[
(0.0076)∑k δd

k Nk
]−1

, implying that when
there is a uniform 10% infection rate for the three groups, mortality rates are 1.1 times the
base mortality rates. We examine a higher mortality penalty in our robustness checks. In
Section 5.6 we show that our results are robust to the extreme case in which ICU capacity
is a hard constraint that cannot be exceeded.

We set the present discounted value of the lost work-life of the three groups upon
death, (∆y, 4m, 4o), by assuming a retirement age of 67.5 years, so that there are 32.5
remaining work-years for the young, 10 years for the middle-aged and 2.5 years for the
old. We also choose the interest rate as 1%.

Finally, in our baseline we treat the arrival time of the vaccine, T, as deterministic.
We have experimented with some specifications including uncertainty, such as Poisson
arrival rates with mean arrival times of 1 or 1.5 years, and the results are very similar. We
prefer deterministic arrival times as our baseline, since these make it easier to interpret
our solution. For example, with deterministic T it is easier to judge whether the solution
is attempting to avoid infections and hold out for the vaccine or giving up on this and
going for herd immunity before its arrival. Specifically, we suppose that a vaccine will
arrive in one and a half years, and so set T = 548 days.

Computational Method. The planning problem amounts to an optimal control problem
over the horizon t ∈ [0, T]. There are nine state variables: (Sj(t), Ij(t), Rj(t)) for j = y, m, o.
In the case of uniform policies there is one control, Lj(t) = L(t), while with semi-targeted
policies there are two controls Lo(t) and Ly(t) = Lm(t), and with fully targeted policies,
three controls, Lo(t),Lm(t) and Ly(t).

We discretize the problem to weekly time intervals. To generate our frontiers, we
minimize a weighted sum of economic costs and deaths subject to the laws of motion of
our model.

The solution is found by using a nonlinear programming method called IPOPT (Wächter
and Biegler, 2006), which implements an interior point solution algorithm. We rely on an
APMonitor-Gekko interface to formulate and pass the optimization problem to the IPOPT
(Hedengren et al., 2014; Beal et al., 2018). As with any non-fully exhaustive numerical so-
lution technique, one must consider the possibility that the solution converges to local
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maxima that are not global maxima. To explore this possibility, we initiated the routines
with different initial control sequences, but never encountered situations where the solu-
tion depended on these initial conditions.

5 Optimal Policies

In this section we present our main quantitative results for the baseline parameter values
described in the previous section. Throughout, our main focus is on the comparison be-
tween the trade-offs presented by optimal uniform policies (where all three age groups
are treated symmetrically), optimal semi-targeted policies (where the oldest age group is
treated differently than the young and middle-aged groups) and optimal fully-targeted
policies (where all three age groups are treated differentially). We summarize these trade-
offs with the frontiers between lives lost and economic damages (as in Figure 1.1 in the
Introduction). The focus on frontiers (rather than a single “optimal” policy) is motivated
by disagreement among policy-makers, scholars, and members of the public about the
exact value of life relative to other economic and social objectives, and because frontiers
summarize the best policy options and provide a better sense of the range of improve-
ments targeting enables. The main message from our baseline results in the next subsec-
tion is that targeting has major benefits in terms of both lives saved and reduced economic
damages, and interestingly, most of these benefits can be achieved with the semi-targeted
policies. The rest of the section turns to other (non-pharmacological) interventions, whose
analysis is made possible or enriched by our model with multiple risk groups. First, we
introduce and study the implications of “group distancing” (which involves additional
social distancing between age groups). Next, we look at the effects of testing and tracing,
with or without group distancing. We also discuss the role of the matching technology
and how the arrival time of the vaccine changes trade-offs. We end the section with a bat-
tery of robustness checks, confirming the broad patterns we have so far emphasized—in
particular, the substantial improvements in public health and economic outcomes owing
to targeting.

5.1 Baseline Results

Figure 5.1 depicts the frontier between lives lost and economic damages under differ-
ent policies. We use the baseline parameter values introduced in the previous section.
Namely, we set α = 2, so that the matching technology is quadratic; ρ = 1 so that, absent
differential lockdowns, individuals match with members from their group and different
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Figure 5.1: Frontiers of output loss vs. death for baseline specification. The three frontiers
represent different levels of targeting.

groups at the same rate; θ = 0.75 for all groups so that a full lockdown will be disobeyed
a quarter of the time; ξ = 0.3, so that workers on average lose 70% of their productiv-
ity when under lockdown; η = 0.9, so that only the 10% of infected individuals end up
being isolated in the baseline; and T = 548, so that the vaccine will arrive in one and a
half years. Throughout, we take the initial conditions of the dynamical system to be 98%
susceptible, 1% infected and 1% recovered within each group. We then trace the frontier
between total deaths from the pandemic and its total economic damages.30 As in Figure
1.1 in the Introduction, the bliss point in this figure is the origin, where there are no (ex-
cess) lives lost and no economic damages. Each curve in the figure represents the frontier
resulting from a different class of policies: the top (red) frontier is for uniform policies,
then below it we have the (green) frontier for semi-targeted policies, and slightly below
this (in blue) is the frontier for fully-targeted policies. The convex shape of the frontiers
represents diminishing returns to pursuing one objective at the expense of the other.

The main message from the red curve in Figure 5.1 is clear. The trade-off facing policy-
makers when the menu of options is limited to uniform policies is quite grim. For exam-
ple, policy-makers prioritizing saving lives could aim for keeping total mortality from
COVID-19 to less than 0.2% of the (adult) population.31 This “safety-focused” optimal

30In practice, we compute optimal policies for eleven points along the frontier and interpolate between
them.

31A mortality rate of 0.2% is still very high. However, as we will see, without systematic testing and
tracing, even this policy leads to very sizable economic losses. This motivates our choice of 0.2% as the
benchmark for safety-focus.
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Figure 5.2: Optimal uniform policy for baseline parameters that achieves the “safety-
focused” objective of limiting the population mortality rate to no more than 0.2%.

uniform policy is depicted in Figure 5.2 and would necessitate a lockdown remaining in
effect in some form until the vaccine’s arrival.32 This lengthy lockdown has significant
economic costs. The economic damages from these optimal uniform policies amount to
37.3% of one year’s GDP (36.3% of this loss is in terms of current losses and the remain-
ing 1% are due to the forgone productive contributions of those who die due to the pan-
demic). The economic loss and deaths that result from this policy are also represented
by the dot that we show on the uniform policy frontier. Several points about the form
of optimal policy are noteworthy in this case. First, consistent with our aggregation re-
sult (and because of the assumption that infection rates are symmetric across risk groups
under uniform policies), the infection rates for the three age groups are on top of each
other in the second panel of Figure 5.2. Nevertheless, the table on the top right of the
figure shows that mortality rates are much higher for the older group, reflecting their
greater vulnerability to the infection. Second, the time path of the infection rate follows
an inverse U shape, typical in SIR models, peaking in about one and a half months and

32This policy would be optimal, alternatively, if we assigned a “value of statistical life” (cost of a
death)—including both economic and non-pecuniary (psychic/emotional) costs—equal to $2.8 million.
Given the 8.66 average life-years lost from a death under a uniform policy, this cost of a death implies
a cost per life-year lost of $306,000. For comparison, the Environmental Protection Agency’s Guidelines
for Preparing Economic Analyses suggests a value of life equal to $9.4 million when updated to 2020 dol-
lars. At a 3% annual real interest rate and a 40.3 year life expectancy for the median person in the
US, this value of life implies a value per life-year of $402,000. In contrast, the US military appears to
place a lower value, paying a total death benefit of $100,000 (https://myarmybenefits.us.army.mil/
Benefit-Library/Federal-Benefits/Death-Gratuity-).
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Figure 5.3: Optimal uniform policy for baseline parameters that achieves the “economy-
focused” objective of limiting economic losses to no more than 10% of one year’s GDP.

declining slowly thereafter. Third, the behavior of the infection rate reveals that opti-
mal policy in this case is “waiting for the vaccine” as it does not lead to herd immunity
against the virus. This can be seen from the fact that when the lockdown is lifted shortly
before the vaccine’s arrival, infections start increasing immediately (only to be brought
under control by the vaccine). This last point is further illustrated in Figure A.1 in the
Appendix, which plots the evolution of the share of susceptibles in the population and
the reproduction rate of the virus under the safety-focused optimal uniform policy.

We can contrast this safety-focused optimal policy with another point on the frontier
with very different priorities—an “economy-focused” optimal uniform policy, limiting
economic damages to no more than 10% of one year’s GDP.33 This policy is shown in
Figure 5.3. In this case, a significantly higher fraction of the population, about 1.05%, will
perish because of the disease.34 It is also worth noting that, differently from the safety-
focused optimal uniform policy, the economy-focused policy goes for “herd immunity”,
with a shorter lockdown that nevertheless significantly flattens the curve of infections
(which is beneficial for avoiding overwhelming ICU capacity as discussed in the previous
section). Infections now peak at a higher level, about 9%, but they also decline to zero and

33The value of a life-year that would justify the economy-focused policy, computed in the same way as
in the previous footnote, is $139,000 compared to $306,000 for the safety-focused policy.

34We stress that this is different from the “no lockdown” policy, which would lead to even more deaths,
perhaps as much as 6.5% of the population, though this number is most probably an overestimate because,
when there are no mandated lockdowns, individuals would adopt a range of voluntary social distancing
measures, reducing the reproduction rate of the virus and infections.
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Figure 5.4: Optimal semi-targeted policy for baseline parameters that achieves the
“safety-focused” objective of limiting the population mortality rate to no more than 0.2%.

never show a further uptick. This is because the faster spread of the virus leads to herd
immunity even before large-scale vaccination.

Our main result can be gleaned by comparing the frontier for optimal uniform policies
to the one for optimal semi-targeted policies, shown in green in Figure 5.1. For example,
for the safety-focused objective which aims to keep total mortality from the virus to less
than 0.2%, a semi-targeted policy can reduce economic losses from the 37.3% mentioned
above to 24.9% (23.3% of this coming in the form of a decline in current GDP). The form
of the safety-focused semi-targeted optimal policy is depicted in Figure 5.4 and has a
number of noteworthy differences from the safety-focused optimal uniform policy. Most
importantly, the lockdown is very strict on the older group and much less strict on the
rest of the population, whose lockdown declines more rapidly and ends sooner than than
in the optimal uniform safety-focused policy. Also notable is the time path of infections.
The safety-focused optimal semi-targeted policy waits for the vaccine for the older group
(who are in lockdown until the vaccine’s arrival) but only partially so for the rest of the
population (whose curve is again flattened so much that by the time the vaccine arrives,
there is still no population-wide herd immunity, as can be seen from the uptick of the
infections just before the vaccine). These points are also illustrated by Figure A.1 in the
Appendix, which shows that the reproduction rate of the virus is above one for several
months before the vaccine’s arrival, but is everywhere less than under the optimal uni-
form policy depicted in the upper panels. Finally, compared to the pattern under opti-
mal uniform policies, the infection rate of the 65+ group reaches a smaller peak, because
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Figure 5.5: Optimal semi-targeted policy for baseline parameters that achieves the
“economy-focused” objective of limiting economic losses to 10% of one year’s GDP.

they are protected by their more strict lockdown. Notably, however, they are still being
infected by the young and the middle-aged because our parameter choice of θ = 0.75
implies that they are in not-too-infrequent contact with these younger groups. This is, in
fact, the reason why the optimal semi-targeted policy in this case keeps the young and
the middle-aged under a relatively long lockdown—as a way of protecting the old.35

Figure 5.5 turns to the optimal semi-targeted policy for achieving the economy-focused
objective of keeping economic losses to less than 10% of one year’s GDP. This policy
achieves much better public health outcomes than the economy-focused optimal uniform
policy, which led to an adult mortality rate of 1.05%. Instead, we now have a lower mor-
tality rate—0.48%—because the stricter lockdown on the older group partially protects
them from infections. Put differently, semi-targeted policies in this case can save 1.37 mil-
lion (= (0.0105-0.0048)×241,000,000) additional lives relative to optimal uniform policies
while achieving the same economic loss. It is worth noting that, like economy-focused
uniform policies, optimal semi-targeted policies in this case also go for herd immunity,
but with a nuance—this herd immunity is achieved primarily with the infections of the
young and the middle-aged, while the more vulnerable older group is kept under lock-
down. Herd immunity also explains why the older group is allowed to come out of its
lockdown gradually starting in about a year.

35An even more “safety-prioritizing” strategy would be to take all the gains from targeting in the form
of reducing mortality (keeping economic damages at 37.3%). If policy-makers pursued this strategy, semi-
targeted policies would enable mortality to be reduced to 0.036%.
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Figure 5.6: Optimal fully-targeted policyfor baseline parameters that achieves the “safety-
focused” objective of limiting the population mortality rate to 0.2%.

A surprising result, at least relative to our initial expectations, is that fully-targeted
policies that treat the young and the middle-aged differently perform essentially as well
as semi-targeted policies. This can be seen from the fact that the blue curve in Figure 5.1 is
nearly indistinguishable from the green curve (for semi-targeted policies). The reason is
that the asymmetric treatment of the young and the middle-aged generates much smaller
gains than those coming from protecting the most vulnerable with the strict lockdown on
the older age group and with the moderate flattening of the curve of infection among the
rest of the population. The form of optimal fully-targeted policies are somewhat different
from those of optimal semi-targeted policies, however. This is shown in Figure 5.6 for
the safety-focused fully-targeted policies and highlights that the middle-aged, who have
higher mortality rates from the virus than the young, are put under a stricter and longer
lockdown. The numbers in the table at the upper right corner of the figure show that
there is some improvement over the optimal semi-targeted safety-focused policy in this
case, but this improvement is small.

One question is whether the strict lockdowns on the old under targeted policy is pri-
marily a result of their higher mortality rate or their lower economic participation. To
shed light on this question, we considered an extended model with four groups. In par-
ticular, we separated the old into two groups, the old-retired, who have no economic
contribution (making up about 80% of the old), and the old-workers, who have the same
productivity as the young and the middle-aged (making up the remaining approximately
20% of the old). We took the mortality rates of the old-retired and old-workers to be
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Figure 5.7: Optimal semi-targeted policies with separate old-working and old-retired
groups – “safety-focus” (top) and “economy-focus” (bottom).
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Figure 5.8: Optimal uniform and semi-targeted policies for a “safety-first” policy that
achieves the objective of limiting the population mortality rate (with baseline parameters)
to no more than 0.05%.

the same in order to make the two groups identical except for their economic opportuni-
ties (and thus clarify the source of our results in a more transparent manner). Figure 5.7
depicts the safety-focused and economy-focused optimal semi-targeted policies, which
treats the young and the middle-aged symmetrically but applies differential lockdowns
to the old-retired and old-workers, and thus is most useful for clarifying the form of our
semi-targeted optimal policies. The figure confirms that the main source of the asymmet-
ric treatment of the older and the younger groups is their differential susceptibility to the
virus—the old-working, who have the same economic opportunities as the young and the
middle-aged, are kept under complete lockdown like the old-retired in the safety-focused
policy and under a relatively long lockdown, coming to an end only after one year, in the
economy-focused policy.

Next, we explore another point on the frontier, which prioritizes saving lives more
strongly than our safety-focused strategy. This strategy, which we label “safety-first”,
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Figure 5.9: Optimal uniform and semi-targeted frontiers when recovered cannot prove
immunity or avoid lockdowns (solid) and baseline where they can (dashed).

aims to keep overall (adult) mortality below 0.05%. Figure 5.8 shows the associated uni-
form and semi-targeted policies. Lockdowns are now much more severe, remaining at
high levels and falling slowly up until the end, just before the vaccine and cure arrive.
With uniform policies, the lower infection and mortality rates come at the higher eco-
nomic cost of 45% (as a fraction of one year’s GDP). Once again, however, targeted poli-
cies can significantly improve these outcomes. For example, with optimal semi-targeted
policy, the same mortality objective can be reached with economic damages amounting
to 37% of one year’s GDP.

Finally, we explore the implications of relaxing the assumption that the previously
infected and now recovered individuals are identified as such and allowed to work, cir-
cumventing any lockdowns. Figure 5.9 shows the baseline parameterization but setting
κj = 0, so the recovered agents are treated like the rest of the population and cannot
avoid lockdowns. This makes lockdowns more costly, especially later in the epidemic.
Figure 5.9 confirms that the frontiers in this case (shown with solid curves) are further
away from the origin than our baseline frontiers (shown with dashed lines) where the
recovered could prove their immunity. Nevertheless, the figure also confirms that semi-
targeted policies still significantly outperform optimal uniform policies.

Overall, our main results show that the trade-offs between lives lost and economic
damages from the pandemic are significantly improved when we consider targeted poli-
cies and most of the gains can be achieved with simple semi-targeted policies that apply
more strict lockdowns on the older, more vulnerable group. We next show that there are
even larger gains when semi-targeted lockdown policies are combined with other non-
pharmacological interventions.
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Figure 5.10: Frontier of output loss vs. death with greater group distancing, ρ = 0.7.

5.2 The Role of Group Distancing

Our model with multiple risk groups enables an investigation of the implications of poli-
cies that reduce inter-group interactions. These types of “group distancing” measures
are particularly important in conjunction with targeted policies, because, as we have em-
phasized, older individuals get infected from their interactions with the young and the
middle-aged, even when they are under strict lockdown. Recall that our baseline param-
eterization assumed the rate of social contact and infection, absent lockdowns, to be the
same across groups—summarized with the infection rate β. A natural alternative is to
assume that matches between groups can be reduced, say by a fraction 1− ρ, so that

ρij =

1 i = j

ρ i 6= j.

Our baseline then corresponds to the special case of this formulation where ρ = 1, and we
now consider the implications of reducing ρ. There are various policy tools for achieving
such reductions, including norm-based interventions (so that people visit their elderly
relatives less often) or law-based interventions (e.g., designating elderly-only hours at
supermarkets and pharmacies or restricting who can visit and work in nursing homes).36

36With our baseline quadratic matching technology, any change in between-group matching will influ-
ence the total number of matches and do so in ways that depend on group size. With the interventions we
have in mind, we believe this is the right type of variation to consider, though it should be borne in mind
that reduced number of matches will directly decrease infection rates as well.
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Figure 5.10 depicts the frontier between lives lost in economic damages under uni-
form, semi-targeted and fully-targeted policies when ρ = 0.7, which implies a 30% reduc-
tion in the interactions between the older age group and the rest of the population relative
to the baseline. The main message is the same as in the previous subsection: there is a sig-
nificant improvement when going from uniform to semi-targeted policies, evidenced by
the sizable shift-in of the frontier from the red (uniform) to green (semi-targeted). There
is essentially no further improvement from full targeting.

This reconfirmation of our main message notwithstanding, there are also notable dif-
ferences from the baseline. First, adding group distancing increases the gains from tar-
geted policy, as depicted in Figure 5.11: safety-focused semi-targeted policies with group
distancing, for example, can achieve a 0.2% mortality with 16.5% economic damages—an
almost one-third reduction in economic loss compared to the optimal safety-focused semi-
targeted policy without group distancing. This figure also shows that group distancing
improves uniform policies, but does not change their overall structure. In particular, in
this case it is still optimal to wait for the vaccine, but now the lockdown is less severe
because group distancing enables the young and the middle-aged to go back to work
with less impact on the old. The corresponding semi-targeted policy changes in notable
ways, however. First, the lockdown on the younger age groups is now much less se-
vere, peaking at just about 30% of these workers, and is completely lifted in just over a
year. Second, the older group is now released from lockdown before the vaccine’s arrival,
which is thanks to the fact that group distancing further protects them from the infected
among the young and the middle-aged.

The economy-focused optimal policies, both uniform and targeted, are similar to those
in our baseline case, but lead to lower mortality. For example, as Figure 5.12 shows,
mortality falls from 0.48% to 0.32% in the optimal semi-targeted policy.

The overall message from this subsection is that, if it is feasible to reduce interactions
between high-risk groups and the rest of society with policies similar to those used for
lockdown, then mortality rates or economic damages, or both, can be reduced consider-
ably.

5.3 The Effects of Testing and Tracing

We next investigate how the ability to test and isolate infected individuals affects optimal
policies and outcomes. Recall that testing and tracing were incorporated into our model
in Section 2, but our baseline scenario assumed that these were not being used, setting
η = 0.90 to reflect only that 10% of the infected would be isolated because of illness mak-
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Figure 5.11: Optimal uniform and semi-targeted “safety-focused” policies with greater
group distancing ρ = 0.7.
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Figure 5.12: Optimal semi-targeted “economy-focused” policy with greater group dis-
tancing (ρ = 0.7).
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Figure 5.13: Frontiers of output loss vs. death with improved testing and isolation.
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Figure 5.14: Optimal “safety-focused” semi-targeted policy with improved testing and
isolation (η = 0.7).

ing them unable to work or socialize. We now introduce testing and tracing and, given
the uncertainties about the exact effectiveness of these measures and the US capacity to
implement them, we consider four cases in Figure 5.13: η = 0.80, η = 0.70, η = 0.60 and
η = 0.50. For example, with a policy in which everybody who is symptomatic is isolated,
we would end up with η = 0.60.37 In practice, the limited number of tests and implemen-
tation difficulties may imply a lower probability of isolating infected individuals (and
thus higher value such as η = 0.70 or even η = 0.80) and successful contract tracing
might lead to a higher probability of identifying and isolating infections (e.g., η = 0.50).
We keep all other parameters at the levels in our base specification.

Figure 5.13 presents the uniform and semi-targeted frontiers for these four values of
η. (η = 0.80 is in the top left corner of the figure; other values proceed clockwise.) As the
ability to identify and isolate the infected increases, the trade-offs improve remarkably.
When η = 0.60 or 0.50, Figure 5.13 shows that mortality rates can be kept at very low
levels at relatively small economic costs.

Figure 5.14 explains why this is so for the case in which the probability of identifying
and isolating the infected individual is equal to 0.30 or η = 0.70: a short and limited
lockdown on the young and the middle-aged, combined with a still fairly strict lockdown
on the older group, is enough to keep infections very low and the overall mortality rate
at 0.2%, and has an economic cost of just 13.9% of GDP.

37This number is based on the following reasoning: approximately 50% of infected individuals are as-
sume to be asymptomatic and it takes five days for the remaining 50% to exhibit symptoms.
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Figure 5.15: Optimal Semi-Targeting with group distancing and testing.

This conclusion is further reinforced in Figure 5.15, which presents the frontiers and
the form of the optimal semi-targeted policy (for the safety-focused case) when there is
group distancing as well as testing-tracing sthat yields η = 0.70. Thanks to the combi-
nation of group distancing and testing-tracing, semi-targeted policies now achieve the
0.2% mortality objective at an economic cost of just 7% of one year’s GDP and requires no
lockdown of the young and middle-aged groups.

Overall, measures to combat the pandemic become much more powerful when tar-
geted policies are combined with group distancing and improved testing and tracing
strategies. With these tools, relatively short lockdowns are sufficient to protect public
health and naturally lead to much more limited economic damages.

5.4 The Role of the Matching Technology

As noted in the Introduction, our baseline model assumes quadratic matching. To high-
light the role of the matching technology we now present optimal policies when the
matching technology has a more limited degree of increasing returns to scale, in par-
ticular, α = 1.5. In Figure 5.16 we show the frontiers for optimal uniform, semi-targeted
and fully-targeted policies for α = 1.5, together with the frontiers for α = 2 for compar-
ison. The contrast of the frontiers shows that the trade-off facing policy-makers is even
worse under more limited increasing returns in the matching technology. Interestingly,
this worsening is more pronounced when the priority is saving lives rather than saving
the economy. Figure 5.17, which plots optimal uniform and semi-targeted policies for
the safety-focused case, explains why. Uniform policies now necessitate an economic loss
of over 45% (again expressed as a fraction of one year’s GDP) to achieve a 0.2% overall
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Figure 5.16: Frontier of output loss vs. death with quadratic and non-quadratic matching
technologies: α = 2 vs. α = 1.5.

mortality. As usual, targeted policies do much better, but still lead to an economic cost of
32.8%.

This result may at first appear surprising, since herd immunity is easier to achieve
when there are more limited increasing returns in the matching technology and this might
make us expect to see lower economic costs. Going against this force, however, is that
lockdowns are less effective when the extent of increasing returns is less than quadratic,
because withdrawing a fraction of the population from the matching pool does not lead
to a quadratic decline in the number of matches. Our results show that the second effect
dominates, and as a result, the trade-off facing policy-makers worsens when α = 1.5.

The situation is somewhat different when the objective is economy-focused, as de-
picted in Figure 5.18. In this case, the additional loss relative to the quadratic match-
ing technology is small—with semi-targeted policies, 0.0054% mortality as compared to
0.0048% before. This is because the economy-focused policies go for herd immunity, in
which case the effects of the less powerful lockdowns under α = 1.5 are lessened and the
benefits of more limited increasing returns in matching are realized. This highlights that
more limited increasing returns to scale in matching tends to favor strategies that go for
herd immunity.
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Figure 5.17: Optimal uniform and semi-targeted policies with α = 1.5 to achieve the
“safety-focused” objective of limiting population mortality to 0.2%.
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Figure 5.18: Optimal uniform and semi-targeted policies with α = 1.5 to achieve the
“economy-focused” objective of limiting economic losses to 10%.
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Figure 5.19: Optimal semi-targeted ““safety-focused” policy with earlier vaccine arrival
(T = 365).

5.5 The Promise of a Vaccine

In this subsection, we consider the implications of an earlier arrival date for the vaccine.
Namely, we reduce T from one and a half years to one year. This has little impact on the
form of the safety-focused semi-targeted policy, which is shown in Figure 5.19 and again
keeps the old undergoing a lockdown until the vaccine arrives and has a fairly lengthy
lockdown on the younger age groups. The economic costs, however, are now lower (for
example only 17.6% of one year’s GDP for the safety-focused case shown in the figure),
because lockdowns end sooner with the earlier arrival of the vaccine: the earlier vaccine
arrival saves 7.3% in economic costs (equivalent to $1.8 trillion) while achieving the same
0.2% mortality rate .

5.6 Other Robustness Exercises

As already noted in the Introduction, there is considerable uncertainty about both the rel-
evant parameters for the COVID-19 virus and for the economic damages from lockdowns.
In this subsection, we confirm that our qualitative conclusions on significant gains from
semi-targeted policies, both in terms of lives saved and reduced economic damages, are
robust to a broad range of variations in parameters. To conserve space, all of the rele-
vant figures are presented in the Appendix, and here we here confine ourselves to a brief
discussion of the results and the implications of these robustness checks.

First, we follow some of the epidemiology literature on COVID-19 policy and im-
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pose a hard constraint on ICU capacity (because over-running ICU capacity would be ex-
tremely costly and unacceptable).38 In practice this means that only policies that ensure
H(t) ≤ 0.000133 at all times are feasible. This constraint implies that under a uniform
policy, ICU capacity would be reached with a population infection rate of 2%.39 Figure
A.2 shows the frontiers in this case both with and without imposing the constraint.40 The
ICU constraint binds along the uniform policy frontier, worsening achievable outcomes,
for economic losses less than 0.34.41 Semi-targeting helps avoid hitting ICU capacity, so
that the ICU constraint binds below an economic loss of 0.20. To illustrate how optimal
policies respond to the need to avoid exceeding available ICU capacity, Figure A.3 shows
the economy-focused uniform policy that results in an economic loss of 0.3%. We see
in this figure that optimal policy now ensures that we remain just against the ICU con-
straint for over six months, and thereafter the lockdown is tightened as we wait for the
vaccine. It is worth stressing that there is no analogue of the repeated toggling on and off
of lockdown measures that emerge in studies such as Ferguson et al. (2020).

We also investigate the implications of increasing the mortality rate of the oldest group
following infection from the Ferguson et al. (2020) numbers to the higher South Korean
numbers. This naturally impacts the overall mortality numbers under a fixed policy, but
has little effect on the gaps between the three frontiers as illustrated in the first panel of
Figure A.4. The table inside the third panel indicates that, in this case, a 0.2% overall
(adult) mortality can be achieved at the slightly higher economic cost of 30.7% than in the
baseline semi-targeted policy.

Our next exercise reduces the basic transmission rate of the disease, which corre-
sponds to the parameter β in our model decreasing from 0.134 (which implied R0 =2.4) to
0.1 (which implies R0 = 1.8). Figure A.5 shows that, not surprisingly, semi-targeted poli-
cies now achieve a 0.2% mortality rate in the adult population at a much lower economic
cost: 12% of one year’s GDP, with semi-targeted policies. Nevertheless, the significant
gain from targeting remains regardless of the exact value of β.

38We also experimented with a higher mortality penalty, λ, to capture the extreme scenario in which
nearly those who need but are denied ICU die. The results are similar to our baseline, but of course lead to
higher mortality rates, especially under the economy-focused policies. The value of semi-targeted policies
are even greater in this scenario.

39Prior to the emergence of COVID-19, the US had roughly 32,000 available ICU beds. We suppose that
available beds can be surged by 15%. Following Ferguson et al. (2020), we assume that 1.58% of adult
infections in the US require ICU care and that, for those cases, 10 days of the 18-day average case duration
will have to be in the ICU.

40We no longer impose a mortality penalty, so the frontiers without the constraint differ slightly from
those in our baseline case.

41We also note that it is impossible to achieve an economic loss below 0.25% without violating the ICU
capacity constraint.
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We next change the initial state to reflect what may be the current situation in some
areas of the US with COVID-19: all three groups start with 15% of their members already
recovered, 84% susceptible, and 1% infected. This leads to large reductions in both eco-
nomic losses and mortality for all policies, which can be seen from the positions of the
frontiers in Figure A.6 relative to the baseline in Figure 5.1. This is a direct consequence
of starting with a smaller susceptible population, which directly reduces infections and
also alters the nature of the safety-focused optimal policies. Indeed, Figure A.6 shows
that the optimal semi-targeted policy gets closer to (but does not quite achieve) herd im-
munity for the younger groups as can be seen from the smaller uptick in infection rates
(compared to our baseline) just before the vaccine’s arrival as well as from the fact that
the older group is released from lockdown before the vaccine. The implications of this
change are quite significant for the economic costs of the safety-focused semi-targeted
policy, which are now a 13.9% economic cost (compared to the 24.8% economic damages
in the baseline).

We next turn to a number of variations concerning social and economic parameters.
We start with the implications of a lower value of θ, 0.5, rather than our baseline of 0.75.
This variation is important for verifying that the benefits from the differential treatment
of the more vulnerable groups remain even when there is greater slippage from the lock-
downs. Figure A.7 shows that, in this case, both safety-focused optimal uniform and
optimal semi-target policies become much more strict in response to lockdowns becom-
ing less effective. This might have been expected to make optimal policy go for herd
immunity, as it has now become very difficult to protect the vulnerable elderly. However,
the safety-focused policies, which aim to keep mortality in the population to below 0.2%,
are forced to go for longer lockdowns to achieve this objective. The result is much larger
economic costs, 52.7% under uniform policies and 42.7% under targeted policies. Never-
theless, as these numbers suggest, the significant gains from targeting remain even in this
case. Figure A.8 shows the economy-focused uniform and semi-targeted policies with
this lower value of θ. Confirming this interpretation, the economy-focused optimal poli-
cies that still go for herd immunity respond to the lower effectiveness of lockdowns by
opening the economy sooner than in the baseline. The lockdown on the younger groups
is completely ended by about six months and even the old are released from their lock-
down completely before the end of the first year. In both cases, targeted policies continue
to improve outcomes significantly.

In Figure A.9 we consider a different formulation for “working from home”. Our
baseline assumption was that all workers could work from home but this entailed a pro-
ductivity loss. We assume that only a fraction 30% of the population can work from home
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and can do so with full productivity. This improves the effectiveness of both uniform
and targeted policies. But the gains are more pronounced with targeted policies because
now the young and middle-aged workers who can work from home productively can be
locked down at no cost, while the remainder are prioritized for release given their lower
productivity at home. As a result, the economic cost of achieving 0.2% mortality in the
population is now 19.7% compared to 24.8% in the baseline. This important difference
notwithstanding, the comparison of the different frontiers is very similar to our baseline
results.

We next consider the implications of increasing the value of the old being out of lock-
down. Our baseline value of this parameter, wo = 0.20, was motivated by the relative
earnings of the over 65 group. There may, however, be additional gains from having
the older group out of lockdown, because they may better enjoy leisure or contribute to
economic activity via their spending. To verify whether our results are robust to incorpo-
rating these considerations, we increase wo to 0.50. Figure A.10 shows that this variation
has little impact on our main results. The gap between the uniform and semi-targeted
frontiers remains sizable. In addition, the safety-focused optimal semi-targeted policy
now exhibits a slight non-monotonicity for the lockdowns on the old. The intuition for
this behavior is as follows: optimal policy starts releasing the old from their lockdown af-
ter about nine months to benefit from the now higher value of their economic and social
activity. However, once the old join the matching pool, infections in the population start
increasing with the old also taking part in economic and social activity, and after three
months, the lockdown on this group is re-tightened. It is also interesting to see that at the
moment the old are back in lockdown, there is an inflection in the lockdown time-path
for the younger groups. This is because, once the old are protected via their own lock-
down, the release of the younger groups can be accelerated, since the concern that their
infections will be transmitted to the more vulnerable elderly is lessened.

We next investigate the implications of incorporating a contact matrix based on Klepac
et al. (2020), as discussed in Section 4, rather than our baseline uniform contact matrix.
This contact matrix, depicted in Figure A.11, implies that age groups are more likely to
interact within themselves than with other age groups and the older group have fewer
contacts.42 The results are presented in Figure A.12, which shows that our main results
and even the quantitative gains from targeting are similar to our baseline findings. For ex-

42Specifically, we now haveρyy = 1, ρmm = .6, ρoo = 0.5, ρym = 0.5, ρyo = ρmo = 0.4. As already noted in
Section 4, the alternative POLYMOD (Hedengren et al., 2014; Prem et al., 2017) data show an even stronger
decrease in contacts with age and an even lower level of contacts between the old and other age groups. We
prefer to use the more recent and more detailed evidence. If the old were further isolated from the younger
groups, the benefits of targeting would be greater.
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ample, semi-targeted safety-focused policies reduce economic damages from 38% to 27%.
But there are also two noteworthy differences. First, fully-targeted policies now generate
somewhat greater gains than semi-targeted policies. Second, the lockdown on the old is
again non-monotonic. The intuition is that the asymmetric contact matrix introduces a
strong form of group distancing, which allows the old to be released from their lockdown
for a while, despite the higher levels of infections among the younger groups. But once
infections within this group start increasing, a second lockdown for them becomes neces-
sary and is maintained until the vaccine arrives. This pattern recurs with fully-targeted
policies in the bottom panels.

Finally, we turn to an investigation of whether the fact that in our model we did not
include exposed, but not yet non-infectious individuals mattered for our conclusions.
This is important, since COVID-19 infections do not immediately lead to infectiousness,
which emerges after about 5 days. Incorporating this feature necessitates generalizing the
classic SIR model to its SEIR variant.43 We do this in Figure A.13, where we assume that,
on average, an infected person is non-infectious for five days before becoming infectious
for an another five days. We recalibrate β so that the initial reproduction rate of the
virus, R0, is still 2.4. The results from this exercise are remarkably similar to our baseline.
For example, the safety-focused optimal targeted policies save about 12% in terms of
economic damages relative to safety-focused optimal uniform policies. Figure A.14 shows
that incorporating the contact matrix from Klepac et al. (2020) with this SEIR extension
leads to very similar results to those in Figure A.12, including the somewhat larger gains
from fully- targeted policies and the non-monotonic lockdown pattern for the old.

Overall, the various exercises in this subsection demonstrate that our qualitative con-
clusions on the significant gains that can be obtained by targeting are quite robust.

43Mathematically, this involves modifying our equations, so that now

Ėj = Mj(S, I, R, L)β(1− θjLj)Sj ∑
k

ρjkηk(1− θkLk)Ik − γE
j Ej

İ = αjEj − γI
j Ij

Ṡj = −Ėj − γE
j Ej

and the rest is unchanged. Here 1/γE
j is the average time individuals are exposed and non-infectious, while

1/γI
j is the average time that individuals remain infectious.
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6 Conclusions

In this paper, we took a first step in analyzing the role of optimal targeted lockdowns in
a multi-group extension of the standard SIR model. This generalization is important in
the context of the COVID-19 pandemic, since existing evidence demonstrates very large
differences in hospitalization and fatality rates between age groups. After providing a
basic analysis of the dynamics of infections in this multi-group setting, we proceeded
to a quantitative investigation of optimal policy, focusing in particular on the frontier
summarizing the trade-offs facing policy-makers between saving lives and improving
economic outcomes. Optimal uniform policy, which treats different demographic groups
symmetrically, as in other works on COVID-19, underscores the grim choices confronting
policy-makers. In our parameterizations, if policy-makers go for safety-focus and try to
limit the mortality rate in the adult population to no more than 0.2%, then they have to
put up with economic losses amounting to 37.3% of one year’s GDP. If they prioritize the
economy and attempt to limit economic losses to be less than 24.8% of one year’s GDP,
then society suffers a mortality rate as high as 1.05%.

Our main result, however, is that better social outcomes are possible with targeted
policies. Differential lockdowns on groups with differential risks can significantly im-
prove policy trade-offs, enabling large reductions in economic damages or excess deaths
or both. We also find that the majority of these gains can be achieved with a simple tar-
geted policy that applies an aggressive lockdown on the oldest group and treats the rest of
the population uniformly. These qualitative conclusions are quite consistent across differ-
ent parameterizations of our model and are the main take-away message from the paper.
For our baseline parameterization, semi-targeted policies could limit economic losses to
24.8% of one year’s GDP while maintaining an adult mortality rate of 0.2%, or limit mor-
tality among the adult population to 0.48% while keeping economic losses at 10% of one
year’s GDP.

We hasten to emphasize that there is considerable uncertainty about some of the key
parameters governing the spread of COVID-19, including how long-lasting immunity is,
its basic reproduction rate, the base mortality rates by group, the additional mortality
penalty from ICU overcapacity and how effective new cures and vaccines will be, as well
as on the exact economic damages caused by lockdowns (in part because neither the ex-
tent to which work from home can substitute for workplace interactions nor the knock-on
effects of current measures on supply chains and worker-firm relations are yet well under-
stood). There is also no consensus on the value of life relative to the social and economic
damages of lockdowns. These are the primary reasons why we emphasize the qualitative
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conclusions from our work—that the trade-off between lives lost and economic damages
improves substantially with targeted policies. We also document that our main results
are robust to a range of changes in parameters.

It is noteworthy that the gains from targeted policies can be substantially increased if
we combine them with additional measures that our multi-group SIR model highlights.
For example, increasing the “social distance” between the oldest group and the rest of the
population—by norms that temporarily reduce visits to older relatives or regulations that
better protect nursing homes and segregate the times when different demographic groups
can go to grocery stores and pharmacies—can reduce fatalities to as little as 0.02% of the
population and cut economic damages to about 7% of one year’s GDP. Another promising
policy, which is also synergistic to targeting, is testing and tracing. Improved testing
and tracing combined with targeted policy can reduce fatalities to 0.02% of the (adult)
population and economic damages to about 7%. If targeted policies, group distancing
and testing and tracing were combined, the trade-offs facing policy-makers would be
radically improved, and our baseline parameterization suggests that the pandemic could
be brought under control very rapidly and with minimal deaths and economic costs.

There is a sense in which our analysis understates the gains from targeting, because
we have focused only on targeting by age. The mortality rates of COVID-19 also vary
significantly by pre-existing co-morbidities, and targeting lockdown and protection poli-
cies to co-morbidities can multiply the benefits from targeting significantly. We leave a
detailed investigation of this issue to future work.

One issue we did not address is how lockdown policies can be implemented, espe-
cially when they are heterogeneous by group and also involve various between-group
social distancing elements. The first aspect of this question is that voluntary behavioral
changes may already achieve some of the objectives of optimal policy (e.g., by voluntary
social distancing and individuals substituting work from home). A second aspect con-
cerns the “mechanism design” question—how these regulations can be effectively imple-
mented. We note here that semi-targeted policies may be easier to implement because the
strictest lockdowns are for older individuals and can be interpreted as a form of “protec-
tive custody” for that group, meaning that it is mostly to protect the group itself not to
reduce the externalities they create on others. The same applies to measures to reduce
interactions between this group and the rest of the population. Despite the importance
of questions surrounding endogenous behavioral change and implementation, we leave
these issues for future work as well.

We view our paper as a first step in enriching the SIR model, which has become a
workhorse tool for understanding and combating the COVID-19 pandemic, by bringing
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in economic effects and trade-offs that depend on differential risks in the population. As
already noted, the results from our study must be taken as illustrative and interpreted
with caution—and hence our greater emphasis on the qualitative patterns and the com-
parison of frontiers. There is much to be done to incorporate richer forms of economic and
epidemiological interactions within and between different groups—especially to study
how changes in economic and social incentives impact the dynamics of infections. Our
conclusion that targeted policies can significantly improve social welfare also highlights
the need for more granular data on COVID-19 in particular, and other diseases and epi-
demics more generally.

References

Alvarez, Fernando, David Argente, and Francesco Lippi, “A Simple Planning Problem
for COVID-19 Lockdown,” Working Paper 26981, National Bureau of Economic Re-
search April 2020.

Atkeson, Andrew, “How Deadly Is COVID-19? Understanding The Difficulties With
Estimation Of Its Fatality Rate,” Working Paper 26965, National Bureau of Economic
Research April 2020.

, “What Will Be the Economic Impact of COVID-19 in the US? Rough Estimates of Dis-
ease Scenarios,” Working Paper 26867, National Bureau of Economic Research March
2020.

Avery, Christopher, William Bossert, Adam Clark, Glenn Ellison, and Sara Fisher El-
lison, “Policy Implications of Models of the Spread of Coronavirus: Perspectives and
Opportunities for Economists,” Working Paper 27007, National Bureau of Economic
Research April 2020.

Bairoliya, Neha and Ayşe İmrohoroğlu, “Macroeconomic Consequences of Stay-At-
Home Policies During the COVID-19 Pandemic,” April 2020. mimeo.

Baqaee, David, Emmanuel Farhi, Michael J Mina, and James H Stock, “Reopening Sce-
narios,” Working Paper 27244, National Bureau of Economic Research May 2020.

Bayham, Jude, Nicolai V. Kuminoff, Quentin Gunn, and Eli P. Fenichel, “Measured
voluntary avoidance behaviour during the 2009 A/H1N1 epidemic,” Proceedings of the
Royal Society B: Biological Sciences, 2015, 282 (1818), 20150814.

47



Beal, L.D.R., D.C. Hill, R.A. Martin, and J.D. Hedengren, “GEKKO Optimization
Suite.„” Processes, 2018, 6 (106).

Brauer, Fred, Pauline van den Driessche, and J. Wu, Mathematical Epidemiology, Springer-
Verlag Berlin Heidelberg, 2008.

Brotherhood, Luiz, Philipp Kircher, Cezar Santos, and Michèle Tertilt, “An economic
model of the Covid-19 epidemic: The importance of testing and age-specific policies,”
2020.

Dingel, Jonathan and Brent Neiman, “How Many Jobs Can be Done at Home?,” April
2020. White Paper.

Eichenbaum, Martin, Sergio Rebelo, and Mathias Trabandt, “The Macroeconomics of
Epidemics,” Working Paper 26882, National Bureau of Economic Research March 2020.

, , and , “The Macroeconomics of Testing During Epidemics,” April 2020. mimeo.

Farboodi, Maryam, Gregor Jarosch, and Robert Shimer, “Internal and External Effects of
Social Distancing in a Pandemic,” Working Paper 27059, National Bureau of Economic
Research April 2020.

Favero, Carlo A., Andrea Ichino, and Aldo Rustichini, “Restarting the Economy While
Saving Lives Under COVID-19,” April 2020.

Fenichel, Eli P, “Economic considerations for social distancing and behavioral based poli-
cies during an epidemic.,” J Health Econ, Mar 2013, 32 (2), 440–451.

Ferguson, NM, D. Laydon, G. Nedjati-Gilani, N. Imai, K Ainslie, M. Baguelin, S. Bha-
tia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, and A. Dighe, “Impact of
non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare
demand,” March 2020. Imperial College COVID-19 Response Team.

Fernández-Villaverde, Jesús and Charles J. Jones, “stimating and Simulating a SIRD
Model of COVID-19 for Many Countries, States, and Cities,” 2020.

Garibaldi, Pietro, Espen R. Moen, and Christopher A Pissarides, “Modelling contacts
and transitions in the SIR epidemics model,” in Charles Wyplosz, ed., Covid Economics
Vetted and Real-Time Papers, CEPR, April 2020.

Garriga, Carlos, Rody Manuelli, and Siddhartha Sanghi, “Optimal Management of an
Epidemic: An Application to COVID-19. A Progress Report,” April 2020. mimeo.

48



Geoffard, Pierre-Yves and Tomas Philipson, “Rational Epidemics and Their Public Con-
trol,” International Economic Review, 1996, 37 (3), 603–624.

Glover, Andrew, Jonathan Heathcote, Dirk Krueger, and José-Víctor Ríos-Rull, “Health
versus Wealth: On the Distributional Effects of Controlling a Pandemic,” Working Pa-
per 27046, National Bureau of Economic Research April 2020.

Gollier, Christian, “Cost-benefit analysis of age-specific deconfinement strategies,” April
2020. presentation slides.

Hedengren, John D., Reza Asgharzadeh Shishavan, Kody M. Powell, and Thomas F.
Edgar, “Nonlinear modeling, estimation and predictive control in APMonitor,” Com-
puters and Chemical Engineering, 2014, 70, 133 – 148.

Heesterbeek, J.A.P. and M.G. Roberts, “The type-reproduction number T in models for
infectious disease control,” Mathematical Biosciences, 2007, 206 (1), 3 – 10. Alcala Special
Issue.

Jones, Callum J, Thomas Philippon, and Venky Venkateswaran, “Optimal Mitigation
Policies in a Pandemic: Social Distancing and Working from Home,” Working Paper
26984, National Bureau of Economic Research April 2020.

Kermack, William Ogilvy, A. G. McKendrick, and Gilbert Thomas Walker, “A con-
tribution to the mathematical theory of epidemics,” Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115
(772), 700–721.

Klepac, Petra, Adam J Kucharski, Andrew JK Conlan, Stephen Kissler, Maria Tang,
Hannah Fry, and Julia R Gog, “Contacts in context: large-scale setting-specific social
mixing matrices from the BBC Pandemic project,” medRxiv, 2020.

Kudlyak, Marianna, Lones Smith, and Andrea Wilson, “Avoidance Behavior at the
COVID19 Breakout in an SI3R Model,” April 2020. mimeo.

Manski, Charles F and Francesca Molinari, “Estimating the COVID-19 Infection Rate:
Anatomy of an Inference Problem,” Working Paper 27023, National Bureau of Eco-
nomic Research April 2020.

McCallum, Hamish, Nigel Barlow, and Jim Hone, “How should pathogen transmission
be modelled?,” Trends in Ecology and Evolution, 2001, 16 (6), 295 – 300.

49



Prem, Kiesha, Alex R. Cook, and Mark Jit, “Projecting social contact matrices in 152
countries using contact surveys and demographic data,” PLOS Computational Biology,
09 2017, 13 (9), 1–21.

Rampini, Adriano A, “Sequential Lifting of COVID-19 Interventions with Population
Heterogeneity,” Working Paper 27063, National Bureau of Economic Research April
2020.

Rowthorn, Robert and Flavio Toxvaerd, “The Optimal Control of Infectious Diseases via
Prevention and Treatment,” Technical Report 2013, Cambridge-INET Working Paper
2020.

Stock, James H, “Data Gaps and the Policy Response to the Novel Coronavirus,” Working
Paper 26902, National Bureau of Economic Research March 2020.

Wächter, A. and L. Biegler, “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming.,” Math. Program, 2006, 106, 25–57.

50



A Appendix: Additional Figures

A.1 Figures for Baseline Simulation
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Figure A.1: Fraction susceptible (left panel) and the reproduction rate R(t) (right panel)
for baseline parameterization under uniform and semi-targeted optimal policies.

A.2 Figures for Robustness Exercises
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Figure A.2: Uniform and semi-targted frontiers when imposing a hard constraint on ICU
capacity.
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Figure A.3: Imposing a hard constraint on ICU capacity, optimal “economy-focused”
uniform policy .
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Figure A.4: Higher mortality rate for the elderly based on South Korean data– frontiers
and optimal “safety-focused” semi-targeted policy.
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Figure A.5: Lower value for transmission rate β, optimal uniform and semi-targeted poli-
cies for safety-first point on the frontier.
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Figure A.6: Alternative initial condition with higher number of recovered individuals –
frontiers and optimal “safety-focused” semi-targeted policy.
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Figure A.7: Lower effectiveness of lockdowns, θ = 0.5 – frontiers and optimal “safety-
focused” semi-targeted policy.
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Figure A.8: Lower effectiveness of lockdowns, θ = 0.5 – optimal “economy-
focused”uniform and semi-targeted policies.

55



0.000 0.005 0.010 0.015
Fatalities as Fraction of Adt. Population

0.0

0.1

0.2

0.3

0.4

0.5

P
D

V
 o

f E
co

no
m

ic
 L

os
s 

in
 F

ra
ct

io
ns

 o
f G

D
P

PDV of Economic Loss vs  Fatalities 

Uniform Policy
SemiTargeted Policy
Targeted Policy

RC: WFH=0.3; PWHF=0: Outcomes for = 0.75, = 2, = 1, = 0.9, T = 546

0 200 400

0.0

0.2

0.4

0.6

0.8

1.0
Lockdown Policy

y
m
o

Outcomes

Economic Loss  0.1971

Adt. Pop. Fatalities 0.002

Y Fatality Rate 0.0003

M Fatality Rate 0.0029

O Fatality Rate 0.0052

0 200 400
0.000

0.025

0.050

0.075

0.100

0.125

0.150
Infection Rates

y
m
o

RC: WFH=0.3; PWHF=0: SF SemiTargeted Policy for  = 0.75 = 2.0 = .9 = 1.0

Figure A.9: Alternative formulation for working from home – frontiers and optimal
“safety-focused” semi-targeted policy.
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Figure A.10: Higher value of the old being out of lockdown – frontiers and optimal
“safety-focused” semi-targeted policy.
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Figure A.11: Contact matrix.
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Figure A.12: Baseline model with calibrated contact matrix – frontiers and optimal
“safety-focused” optimal policies.
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Figure A.13: SEIR model – frontiers and optimal “safety-focused” uniform and semi-
targeted policy.
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Figure A.14: SEIR model with calibrated contact matrix – frontiers and optimal “safety-
focused” optimal policies.
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