LIFE SCIENCES

BATES WHITE ECONOMIC CONSULTING

Policy brief: Economic profitability of the biopharmaceutical industry, an update

RICHARD MANNING, PHD SAURAV KARKI, MBA, CFA Bates White Economic Consulting

MAY 2020

I. KEY POINTS

- Traditional industry profitability comparisons fail to appropriately account for the relative financial risks and differing costs of capital across industries.
- A measure that appropriately adjusts for costs of capital to reflect investment risks shows biopharmaceutical industry economic profits to be below the median of the distribution of all industries and trending downward over time.

II. INTRODUCTION

Pricing and profitability in the prescription drug industry are never far from the headlines. The current novel coronavirus pandemic has heightened attention to the industry as hope for effective vaccines and treatments are at the center of attention. In this context, it is useful to review evidence about the financial performance of this important sector. Typically, thoughts about perceived high prices of certain drugs are followed in near succession by perceptions of high profits in the industry. After all, how can profits *not* be high if prices are?

Part of the answer to that question has a great deal to do with a common failure to appropriately adjust for financial risks and costs. By analogy, if one looked at the earnings of someone who just won a large lottery prize, one might be fooled into thinking the lottery is a good investment. It is not. For the vast majority of lottery players, the purchase of a ticket is a losing proposition. To judge the financial soundness of lottery ticket purchases only on the winnings of the lucky few would lead one to a seriously errant conclusion. In other words, this ignores that the sales and profits generated by the pharmaceutical industry are based on the investments made over a long time horizon.

In the same way, analyses showing excess profitability among innovative biopharmaceutical companies typically rely on a view of accounting profitability that generally does not address the variation in costs and risks faced by companies across industrial sectors. In order to effectively compete, companies in certain sectors must carry higher levels of invested capital and face different costs of capital, which reflects the return required by investors in a business to compensate for financial risk. Similarly, the accounting treatment of research and development (R&D) expenditures, and the failure to recognize intangible assets, also tends to overstate the return on invested capital for companies whose businesses require large investments in capital, which generate substantial intangible assets, such as innovative biopharmaceutical companies. In order to get a clear picture of the economic performance across sectors, these costs and risks must be factored into the analysis.

Studies that focus on accounting profits in this sector are common. For instance, a 2017 GAO report indicated that "[a]bout 67 percent of all drug companies saw an increase in their annual average profit margins from 2006 to 2015."¹ The report also noted that the annual average profit margin for the largest 25 drug companies fluctuated between 15 and 20 percent whereas it fluctuated between 4 and 9 percent for companies in other industries. Similarly, research by Sood et al. focused on the common accounting measures of gross and net profit margins in discussing returns in the pharmaceutical industry compared to companies in other sectors, suggesting

¹ U.S. Government Accountability Office (GAO), "Drug Industry: Profits, Research and Development Spending, and Merger and Acquisition Deals," GAO-18-40: Published: Nov 17, 2017. Publicly Released: Dec 19, 2017.

branded biopharmaceutical sector profits are higher than all other industrial sectors.² A more appropriate picture of economic performance considers not only these accounting measures, but also those that reflect differing costs of capital and risks across sectors of the economy.

We add to the discussion considering those effects. The most recently available public data show that economic profitability, which accounts for the cost of capital, for the biopharmaceutical industry is not at the high end of the spectrum of industries in the US economy. Rather, it is below the median of all industries. Moreover, the economic profitability of this sector is declining over time as the required investments have been increasing.

A commonly used measure of a company's financial performance in the literature that includes cost of capital is economic value added (EVA).³ This measure is represented by accounting profits less capital expenses. At the micro level, capital expenses are estimated by multiplying a company's invested capital by the firm's cost of capital.⁴ Additionally, the EVA spread, expressed as EVA divided by invested capital, can be used to more appropriately compare economic profitability across industries.

Invested capital measures the capital invested in the operating assets of the firm or the existing assets of the firm. The investments made by a firm with the invested capital allow the firm to generate earnings. The pharmaceutical industry's high level of invested capital is a reflection of the need to make substantial investments in R&D and expend other upfront costs. The financial risks involved in drug development also contribute to relatively higher weighted average costs of capital for the innovative biopharmaceutical companies.

Aside from adjustments to the cost of capital, the treatment of research and development expenses (which are not capitalized as a long-term asset but recognized in the same period) and intangible assets that are not recognized on the company's financial statement will both lead to an overestimation of reported return on invested capital. A leading finance textbook summarizes this as follows: "When a company builds a plant or purchases equipment, the asset is capitalized on the balance sheet and depreciated over time. Conversely, when a company creates an intangible asset, such as a brand name or patent, the entire outlay must be expensed immediately.

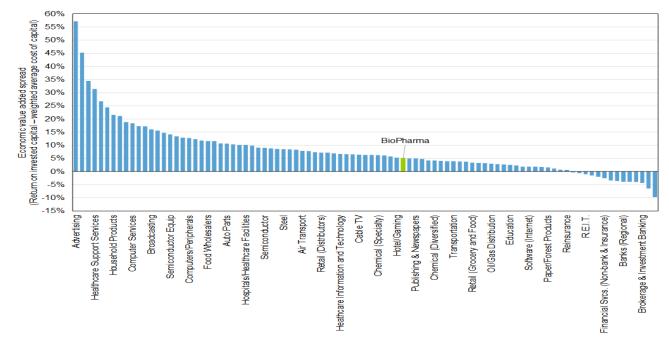
"For firms with significant intangible assets, such as technology and biopharmaceutical companies, failure to recognize intangible assets can lead to a significant underestimation of a company's invested capital, and, thus, overstate return on invested capital (ROIC)."⁵ Adjusting for these effects, it has been reported that "[e] mpiric work has illustrated that estimates of economic-based rates of return range from ~2 to ~11 percentage points below various accounting-based rates of return for drug companies."⁶ In other words, accounting-based economic profitability measures are overstated for industries such as the innovative biopharmaceutical industry because intangible assets are not properly recognized in a company's accounting statement. Despite this point, the analysis in this brief has not been adjusted for either R&D capitalization or unrecognized intangible assets. If

² Neeraj Sood, Tiffany Shih, Karen Van Nuys, and Dana Goldman, The Flow of Money Through The Pharmaceutical Distribution System, (June 2017). USC (University of Southern California), Leonard D. Schaeffer Center for Health Policy and Economics, available at <u>http://healthpolicy.usc.edu/Flow of Money Through the Pharmaceutical Distribution System.aspx</u>.

³ Richard A. Brealey, Stewart C. Myers, and Franklin Allen, Principles of Corporate Finance (New York: McGraw-Hill, 2006) at 311. See also Tim Koller, Marc Goedhart, and David Wessels, Valuation: Measuring and Managing the Value of Companies, (New Jersey: John Wiley and Sons, Inc.: 2005), 63–64. (Economic profit = NOPLAT – [Capital charge or (Invested Capital x WACC)], where NOPLAT stands for net operating profit less adjusted taxes, and WACC stands for weighted average cost of capital.)

⁴ Invested capital is the sum of equity and debt for a firm. Cost of capital is the weighted average cost of capital for a firm.

⁵ Tim Koller, Marc Goedhart, and David Wessels, Valuation: Measuring and Managing the Value of Companies, (New Jersey: John Wiley and Sons, Inc.: 2005), 199–200.


⁶ Grant H. Skrepnek, "Accounting- versus economic-based rates of return: Implications for profitability measures in the pharmaceutical industry," *Clinical Therapeutics* 26, no. 1 (2004): 155–174.

we had the data to undertake such adjustments, the measure of economic returns we show would undoubtedly be reduced for the biopharmaceutical and other R&D intensive industries.

In this brief, we illustrate how the biopharmaceutical industry's EVA spread compares with that of other industries using the most recent publicly available data.⁷ We discuss how this industry's EVA spread has changed over time and also include illustrations of trends for EVA spread for other industries for comparison.

III. EVA SPREAD FOR THE BIOPHARMACEUTICAL INDUSTRY IS BELOW THE MEDIAN OF ALL INDUSTRIES

As illustrated in Figure 1 below, the biopharmaceutical industry's economic profit measure (i.e., EVA spread) places it below the median of the distribution of all industries in the latest data available. This is not surprising because, although the biotech and pharmaceutical industries have higher levels of accounting profits, they also have substantially higher level of invested capital, and higher cost of capital. It is notable that when we first published this analysis using 2017 data, the biopharmaceutical industry ranked higher in this distribution, closer to the mid-range. The industry's EVA spread for 2019 is below the median.

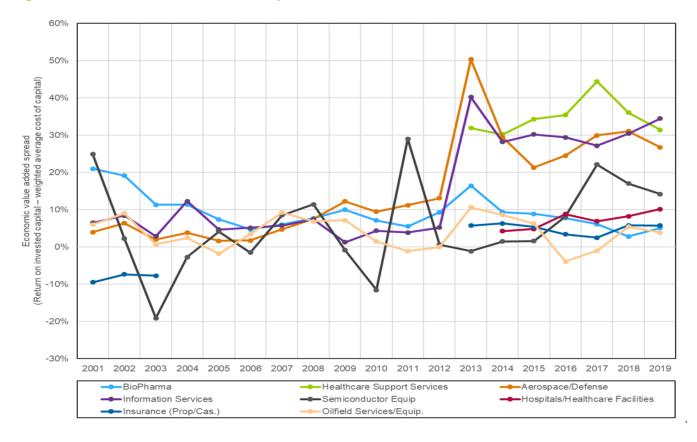
Figure 1 – Economic value added (EVA) spread for 2019⁸

Source: Damodaran Online (data updated January 2020). The chart includes industries with positive return on equity.

7 All of the current and historical data used in this paper is publicly available from Damodaran Online. See http://people.stern.nyu.edu/adamodar/New Home Page/data.html

8 Return on capital is EBIT (1-t) / (BV of Debt + BV of Equity-Cash). See Damodaran Online, Financial Ratios and Measures. <u>http://people.stern.nyu.edu/adamodar/New</u><u>Home Page/definitions.html</u>, EBIT stands for earnings before interest and taxes, t stands for taxes, and BV stands for book value.

IV. TRENDS IN ECONOMIC PERFORMANCE OVER TIME


In addition to invested capital requirements and related issues discussed above, company performance depends on economic conditions that evolve over time, including business cycles and changes in overall demand patterns in an economy. To illustrate how performance has changed over time, Figure 2 presents the EVA spread for a handful of industries from 2001 through 2019. Unsurprisingly, some industries have experienced steady increase in EVA over time, and others have experienced fluctuations.

It is interesting that the EVA spread for the healthcare support services industry (which includes pharmacy benefit managers, drug wholesalers and insurers, among others) has been among the highest since 2013, when the data for that industry began to be reported. The EVA spread for the information services industry remained in a rather narrow band from 2001 through 2012, but has since grown substantially, being among the industries with the highest EVA spread in recent years. The aerospace and defense sector has shown a steady increase from early 2000s to the present – increasing from 4% in 2001 to about 27% in 2019. The semiconductor equipment industry's EVA spread was about 14% in 2019 but has varied considerably since 2001. The economic performance of the biopharmaceutical industry has been within the range of other industries over the time period for which we have data, but has drifted toward the bottom of that range in recent years.

Figure 2 also shows that the EVA spread for the oil services and equipment industry was negative in 2011 and has fluctuated between a low of negative 3.9% in 2016 and a high of 10.6 % in 2013. This relative lower levels of EVA spread is also a reflection of relatively high invested capital requirements. The EVA spread for the property and casualty insurance industry was relatively low at 5.7% in the most recent period. The EVA spread for this sector was negative 9.4% in 2001 and reached a high of 6.3% in 2014 (data were not available between 2004 and 2010). The lower levels of EVA spread for this industry are attributable to a relatively high level of invested capital required to operate the property and casualty insurance business.

As discussed above, while accounting for the cost of capital, EVA spread does not fully account for the treatment of intangible (unmeasured) capital that results from R&D investment. Measuring this intangible capital is difficult at an industry level, but given that the biopharmaceutical industry is one of the most R&D intensive industries, EVA spread still most likely overstates the financial performance of biopharmaceuticals and other R&D intensive sectors. Moreover, the trend for economic profitability in this industry is downward, something that is a concern for an industry that is responsible for bringing to market products that enable progress against important diseases.⁹

⁹ For a more complete discussion of the potential impact of declining economic returns in drug discovery, see E.R. Berndt, D. Nass, M. Kleinrock and M. Aitken, "Decline in Economic Returns From New Drugs Raises Questions About Sustaining Innovations, Health Affairs 34, No.2 (2015): 245-252.

Source: Damodaran Online. Data for each year updated in January of the following year (i.e., 2019 data as of January 2020).

In view of the fluctuations in EVA spread over time, Figure 3 shows the average EVA spread for various industries over the last three years for which data are available. Of primary interest, the biopharmaceutical industry's EVA spread of 4.6% is well below the median of all industries: higher than the negative 2.2% for the shipbuilding and marine sector but obviously much lower than the 61% observed for the advertising industry and lower even than auto parts, food wholesalers, construction supplies and others.

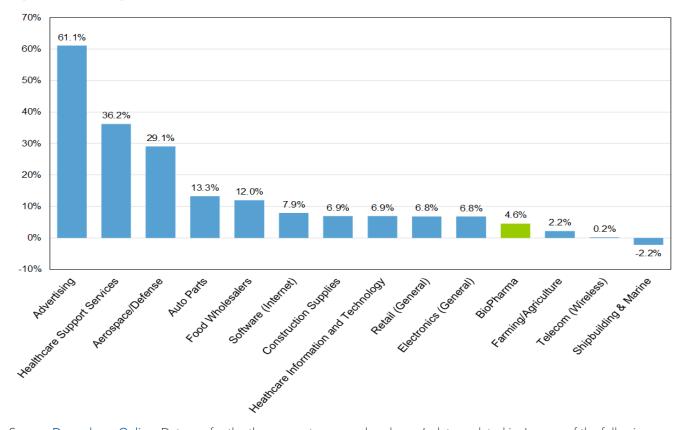


Figure 3 – Average economic value added (EVA) spread for various industries, 2017–2019

Source: <u>Damodaran Online</u>. Data are for the three recent years and each year's data updated in January of the following year (i.e., 2019 data as of January 2020). Biopharmaceutical industry is the weighted average of biotechnology and pharmaceuticals. The three-year average economic profit spread is weighted by the book value of capital.

V. CONCLUSION

In this brief, we have reviewed a measure of economic performance that adjusts for the risks born by investors and the varying capital costs associated with differing types of investments across different industries in the US economy. We find that the biopharmaceutical industry is not extraordinarily profitable on this measure, but in fact is below the median of US industries. This is a reality that policy makers and other stakeholders ought to bear in mind as policies are considered that will affect the future prospects of this vital American industry.

WASHINGTON, DC

2001 K Street NW North Building, Suite 500 Washington, DC 20006